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Section 1: My background
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» Assistant Professor at the
Center for Magnetic Resonance Research (CMRR)

at the University of Minnesota
 CMRR specializes in high-field MRI (7T, 10.5T)

http://www.cmrr.umn.edu
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Research summary

« What | work on

— Modeling visual processing in the brain
— Object and form vision

 Approach
— High-field fMRI
— Data-driven approach
— Computational modeling

” Resources » Statistics and data analysis

o : » fMRI methods
http://cvnlab.net 7 7% "° o

» Open science (public data and code)
(data have been re-used in other publications)

Kendrick Kay, CMRR, University of Minnesota



Computing approach

» Pull bits and pieces from:
— FreeSurfer
- SPM
— FSL

 |Integrate into MATLAB pipelines

— Some standalone MATLAB toolboxes
(GLMdenoise, analyzePRF, etc.)

* Analysis is done mostly on a large workstation,

using cluster computing for parallel analysis of
Individual voxels
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Section 2: Thoughts on statistics,
analysis, and coding
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Think first, program later

Step 1. Why should we even care?
(neuroscientific theory)

Step 2. What is the proper analysis approach?
(statistics)

Step 3. How do we implement this effectively?
(data science)

There are many ways to analyze data.
Before hacking away, think about the proper way.

Statistical principles for fMRI denoising: Statistics blog:
http://kendrickkay.net/GLMdenoise/ http://randomanalyses.blogspot.com

Statistics materials at:
http://kendrickkay.net/psych5007/
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ook at your data!

« (Good visualization can do wonders.

* This cannot be automated. The brain is still necessary.
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The importance of functions

» Reusable and documented functions are super
important. Take time to do it.

* A function is a promise to your future self.

* (Good function documentation is a skill. One must
determine the proper amount of detall.
— No one wants to see computer code in a scientific paper.

— On the other hand, can you clearly and concisely state
exactly what you did to your data”
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Section 3: A model-based
approach to fMRI

Kendrick Kay, CMRR, University of Minnesota



Stage 1: model estimation

A s l m p I e exa m p I e Estimate a receptive-field model for each voxel .
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Visual representation

 Different stimuli drive different areas

EII \\\
L

Kendrick Kay, CMRR, University of Minnesota



Functional models of the visual system

The general question Is:
What information-processing operations does the brain perform?
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Why model building is a hard problem

* High-dimensional problem
» Small amount of data
* Nonlinear mapping

Static 100 x 100 grayscale images:
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« y=Xh+n

Receptive field

0.5

Responses

Kay, Nature, 2008

(1750 x 1) = (1750 x 2730) (2730 x 1) + (1750 x 1)
» Regularized linear regression (e.g. ridge regression)

~

h = argmin
h
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* Nonlinear optimization
(MATLAB's Isgcurvefit)
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Relationship to MVPA

* A lot of fMRI studies use multivariate pattern analysis
(MVPA), in which a classifier is trained to distinguish

experimental conditions. How does the model-building
approach differ?

» That's a longer discussion. For information, see:
— Naselaris, T. & Kay, K.N. Resolving ambiguities of MVPA using explicit
models of representation. Trends in Cognitive Sciences (2015).

— Naselaris, T., Kay, K.N., Nishimoto, S., & Gallant, J.L. Encoding and decoding
In fMRI. Neurolmage (2011).

— Kay, K.N. Understanding visual representation by developing receptive-field
models. In: Visual Population Codes, edited by N. Kriegeskorte & G. Kreiman
(2011).
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Section 4: What is the value
of computational models?
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Computation

» Distinction between computational methods
and computational models
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The brain as a computational device

* The brain represents sensory information
* The brain processes information
* The brain stores information

* The brain uses information to guide motor behavior

We want a model that characterizes
the computations that the brain performs.

| see Robert De Niro
in front of me!

Behavior

Brain
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What are models good for?

 Describe / summarize

— Given a big set of data, can we say something?
— Compact description of a system using a few numbers

* Explain / reduce / uncover mechanism

— |dentify the fundamental operators that give rise to a
phenomenon

* Interpret / assign computational function

— The firing of this neuron achieves an important
behavioral goal
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Some important issues in modeling

 What type of model is this? (i.e. what are the inputs and outputs?)
 What is the goal of this model? How general is the model?

* Tractability, complexity

* |s the model simple enough to be interpretable?

* Level of biological detall

« (Can we get enough experimental data to learn the parameters?

* Which parts of the model are essential? What about other models? Can
we do model comparison?

* Does the make make some interesting predictions that we might test In
some future experiment?

 How clearly is the model described?
« (Can we actually reproduce the model? (software, code)
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Section 5: Steps In building
encoding models
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Steps In building encoding models

Consider an alternative model Select a model
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The statistical machinery
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And therein lies a can of worms...

* Noise celling

» Experimental design (stimulus sampling)
» Developing better models

» Cross-validation schemes

* Local minima

» Computational time for model fitting

* Model interpretation

» Describing model detalls clearly

Kendrick Kay, CMRR, University of Minnesota



Section 6: Recent work
on high-resolution fMRI
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Pre-processing

8T1s,2T2s (0.8 mm, 3 T)

0.8-mm fMRI protocol (7 T, GE-EPI, TR 2.2 s,
84 slices, MB2, IPAT3) + GRE fieldmaps

FreeSurfer (dense, layer, truncated)

slice time correction (and temporal upsampling), motion correction,

fleldmap undistortion, coregistration to T2

1 temporal resampling, 1 spatial resampling
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Improvements in spatial resolution

2.mm (3 T)

GE-EPI, 2.2-s TR, MB2, IPAT3
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'Good coverage
£ High signal-to-noise
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Challenges in high-resolution fMRI

» Sighal-to-noise ratio
 VVelns and neurovascular issues

* A lot of data to look at!
 Memory, computational time, disk space

Kendrick Kay, CMRR, University of Minnesota
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