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Science in crisis (?)

IN THE WAKE OF HIGH-PROFILE CONTROVERSIES, PSYCHOLOGISTS 
ARE FACING UP TO PROBLEMS WITH REPLICATION.
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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.
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prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false. OBITUARY Wylie Vale 
and an elusive stress 
hormone p.542

HISTORY OF SCIENCE Descartes’ 
lost letter tracked using 
Google p.540

EARTH SYSTEMS Past climates 
give valuable clues to future 
warming p.537

AVIAN INFLUENZA Shift expertise 
to track mutations where 
they emerge p.534

Raise standards for  
preclinical cancer research

C. Glenn Begley and Lee M. Ellis propose how methods, publications and  
incentives must change if patients are to benefit.

Efforts over the past decade to  
characterize the genetic alterations 
in human cancers have led to a better 

understanding of molecular drivers of this 
complex set of diseases. Although we in the 
cancer field hoped that this would lead to 
more effective drugs, historically, our ability 
to translate cancer research to clinical suc-
cess has been remarkably low1. Sadly, clinical 

trials in oncology have the highest failure 
rate compared with other therapeutic areas. 
Given the high unmet need in oncology, it 
is understandable that barriers to clinical 
development may be lower than for other 
disease areas, and a larger number of drugs 
with suboptimal preclinical validation will 
enter oncology trials. However, this low suc-
cess rate is not sustainable or acceptable, and 

investigators must reassess their approach to 
translating discovery research into greater 
clinical success and impact.

Many factors are responsible for the high 
failure rate, notwithstanding the inher-
ently difficult nature of this disease. Cer-
tainly, the limitations of preclinical tools 
such as inadequate cancer-cell-line and 
mouse models2 make it difficult for even 

Many landmark findings in preclinical oncology research are not reproducible, in part because of inadequate cell lines and animal models.
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In this paper, we exploit a new multi-country 
historical dataset on public (government) debt to 
search for a systemic relationship between high 
public debt levels, growth and inflation.1 Our 
main result is that whereas the link between 
growth and debt seems relatively weak at “nor-
mal” debt levels, median growth rates for coun-
tries with public debt over roughly 90 percent 
of GDP are about one percent lower than other-
wise; average (mean) growth rates are several 
percent lower. Surprisingly, the relationship 
between public debt and growth is remarkably 
similar across emerging markets and advanced 
economies. This is not the case for inflation. We 
find no systematic relationship between high 
debt levels and inflation for advanced econo-
mies as a group (albeit with individual country 
exceptions including the United States). By con-
trast, in emerging market countries, high public 
debt levels coincide with higher inflation.

Our topic would seem to be a timely one. 
Public debt has been soaring in the wake of the 
recent global financial maelstrom, especially in 
the epicenter countries. This should not be sur-
prising, given the experience of earlier severe 
financial crises.2 Outsized deficits and epic bank 
bailouts may be useful in fighting a downturn, 
but what is the long-run macroeconomic impact, 

1 In this paper “public debt” refers to gross central 
government debt.   “Domestic public debt” is government 
debt issued under domestic legal jurisdiction. Public debt 
does not include debts carrying a government guarantee. 
Total gross external debt includes the external debts of all 
branches of government as well as private debt that is issued 
by domestic private entities under a foreign jurisdiction.

2 Reinhart and Rogoff (2009a, b) demonstrate that the 
aftermath of a deep financial crisis typically involves a 
protracted period of macroeconomic adjustment, particu-
larly in employment and housing prices. On average, public 
debt rose by more than 80 percent within three years after 
a crisis.

Growth in a Time of Debt

By Carmen M. Reinhart and Kenneth S. Rogoff*

especially against the backdrop of graying pop-
ulations and rising social insurance costs? Are 
sharply elevated public debts ultimately a man-
ageable policy challenge?

Our approach here is decidedly empirical, 
taking advantage of a broad new historical 
dataset on public debt (in particular, central 
government debt) first presented in Carmen M. 
Reinhart and Kenneth S. Rogoff (2008, 2009b). 
Prior to this dataset, it was exceedingly difficult 
to get more than two or three decades of pub-
lic debt data even for many rich countries, and 
virtually impossible for most emerging markets. 
Our results incorporate data on 44 countries 
spanning about 200 years. Taken together, the 
data incorporate over 3,700 annual observations 
covering a wide range of political systems, insti-
tutions, exchange rate and monetary arrange-
ments, and historic circumstances.

We also employ more recent data on external 
debt, including debt owed both by governments 
and by private entities. For emerging markets, 
we find that there exists a significantly more 
severe threshold for total gross external debt (public and private)—which is almost exclu-
sively denominated in a foreign currency—than 
for total public debt (the domestically issued 
component of which is largely denominated 
in home currency). When gross external debt 
reaches 60 percent of GDP, annual growth 
declines by about two percent; for levels of 
external debt in excess of 90 percent of GDP, 
growth rates are roughly cut in half. We are not 
in a position to calculate separate total exter-
nal debt thresholds (as opposed to public debt 
thresholds) for advanced countries. The avail-
able time-series is too recent, beginning only in 
2000. We do note, however, that external debt 
levels in advanced countries now average nearly 
200 percent of GDP, with external debt levels 
being particularly high across Europe.

The focus of this paper is on the longer term 
macroeconomic implications of much higher 
public and external debt. The final section, how-
ever, summarizes the historical experience of 
the United States in dealing with private sector 

* Reinhart: Department of Economics, 4115 Tydings 
Hall, University of Maryland, College Park, MD 20742 (e-mail: creinhar@umd.edu); Rogoff: Economics Depart-
ment, 216 Littauer Center, Harvard University, Cambridge 
MA 02138–3001 (e-mail: krogoff@harvard.edu). The 
authors would like to thank Olivier Jeanne and Vincent R. 
Reinhart for helpful comments.
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Reinhard & Rogoff have clearly exerted a major influence in recent 
years on public policy debates over the management of government 
debt and fiscal policy more broadly. Their findings have provided 
significant support for the austerity agenda that has been ascendant 
in Europe and the United States since 2010. - Herndon et al., 2013
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Is the evidence for austerity based on an Excel spreadsheet
error?
By By Brad PlumerBrad Plumer   April 16, 2013April 16, 2013

One of the more influential studies that's often used to argue for austerity hasOne of the more influential studies that's often used to argue for austerity has

come in for an extensive new critique. (come in for an extensive new critique. (Update: Update: The authors respond downThe authors respond down

below.)below.)

The paper in question is Carmen Reinhart and Kenneth Rogoff's famous 2010The paper in question is Carmen Reinhart and Kenneth Rogoff's famous 2010

studystudy "Growth in a Time of Debt," which found that economic growth severely "Growth in a Time of Debt," which found that economic growth severely

suffers when a country's public debt level reaches 90 percent of GDP. That 90suffers when a country's public debt level reaches 90 percent of GDP. That 90

percent figure percent figure has often been citedhas often been cited in the past few years as one big reason why in the past few years as one big reason why

countries must trim their deficits — even if their economies are still weak.countries must trim their deficits — even if their economies are still weak.

But a But a new critiquenew critique (pdf) by Thomas Herndon, Michael Ash and Robert Pollin (pdf) by Thomas Herndon, Michael Ash and Robert Pollin

claims that this result may need revision. For one, the economists argue thatclaims that this result may need revision. For one, the economists argue that

Reinhart and Rogoff excluded three episodes of high-debt, high-growth nationsReinhart and Rogoff excluded three episodes of high-debt, high-growth nations

— Canada, New Zealand, and Australia in the late 1940s. Second, they argue,— Canada, New Zealand, and Australia in the late 1940s. Second, they argue,

Reinhart and Rogoff made some contestable assumptions about weightingReinhart and Rogoff made some contestable assumptions about weighting

different historical episodes.different historical episodes.

Now, those are two methodological objections. But there's also a third problem,Now, those are two methodological objections. But there's also a third problem,

as Mike Konczal as Mike Konczal details heredetails here. Reinhart and Rogoff appear to have made an. Reinhart and Rogoff appear to have made an

“Reinhart and Rogoff appear to have made an error with one of 
their Excel spreadsheet formulas. By typing AVERAGE(L30:L44) 
at one point instead of AVERAGE(L30:L49), they left out 
Belgium, a key counterexample [to their claim]”

Last week, three economists at the University of Massachusetts, 
Amherst, released a paper criticizing our findings. They correctly 
identified a spreadsheet coding error that led us to miscalculate 
the growth rates of highly indebted countries since World War II.
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The Opinion Pages |  OP-ED CONTRIBUTORS

Debt, Growth and the Austerity Debate
By CARMEN M. REINHART and KENNETH S. ROGOFF APRIL 25, 2013

CAMBRIDGE, Mass.

IN May 2010, we published an academic paper, “Growth in a Time of Debt.”
Its main finding, drawing on data from 44 countries over 200 years, was that in
both rich and developing countries, high levels of government debt — specifically,
gross public debt equaling 90 percent or more of the nation’s annual economic
output — was associated with notably lower rates of growth.

Given debates occurring across the industrialized world, from Washington to
London to Brussels to Tokyo, about the best way to recover from the Great
Recession, that paper, along with other research we have published, has frequently
been cited — and, often, exaggerated or misrepresented — by politicians,
commentators and activists across the political spectrum.

Last week, three economists at the University of Massachusetts, Amherst,
released a paper criticizing our findings. They correctly identified a spreadsheet
coding error that led us to miscalculate the growth rates of highly indebted
countries since World War II. But they also accused us of “serious errors”
stemming from “selective exclusion” of relevant data and “unconventional
weighting” of statistics — charges that we vehemently dispute. (In an online-only

http://www.peri.umass.edu/236/hash/31e2ff374b6377b2ddec04deaa6388b1/publication/566/
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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 

The Essay section contains opinion pieces on topics 
of broad interest to a general medical audience. 

Why Most Published Research Findings 
Are False 
John P. A. Ioannidis

Citation: Ioannidis JPA (2005) Why most published 
research fi ndings are false. PLoS Med 2(8): e124.

Copyright: © 2005 John P. A. Ioannidis. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 
work is properly cited. 

Abbreviation: PPV, positive predictive value

John P. A. Ioannidis is in the Department of Hygiene 
and Epidemiology, University of Ioannina School of 
Medicine, Ioannina, Greece, and Institute for Clinical 
Research and Health Policy Studies, Department of 
Medicine, Tufts-New England Medical Center, Tufts 
University School of Medicine, Boston, Massachusetts, 
United States of America. E-mail: jioannid@cc.uoi.gr

Competing Interests: The author has declared that 
no competing interests exist.

DOI: 10.1371/journal.pmed.0020124

Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.

PLoS Medicine  |  www.plosmedicine.org 0696

Essay

Open access, freely available online

August 2005  |  Volume 2  |  Issue 8  |  e124

Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 

The Essay section contains opinion pieces on topics 
of broad interest to a general medical audience. 

Why Most Published Research Findings 
Are False 
John P. A. Ioannidis

Citation: Ioannidis JPA (2005) Why most published 
research fi ndings are false. PLoS Med 2(8): e124.

Copyright: © 2005 John P. A. Ioannidis. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 
work is properly cited. 

Abbreviation: PPV, positive predictive value

John P. A. Ioannidis is in the Department of Hygiene 
and Epidemiology, University of Ioannina School of 
Medicine, Ioannina, Greece, and Institute for Clinical 
Research and Health Policy Studies, Department of 
Medicine, Tufts-New England Medical Center, Tufts 
University School of Medicine, Boston, Massachusetts, 
United States of America. E-mail: jioannid@cc.uoi.gr

Competing Interests: The author has declared that 
no competing interests exist.

DOI: 10.1371/journal.pmed.0020124

Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.

• Research findings are less likely to be true: 
• The smaller the studies conducted in a scientific field 
• The smaller the effect sizes in a scientific field 
• The greater the number and the lesser the selection of tested 

relationships in a scientific field 
• The greater the flexibility in designs, definitions, outcomes, 

and analytical modes in a scientific field 
• The greater the financial and other interests and prejudices 

in a scientific field 
• The hotter a scientific field (with more scientific teams 

involved)
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Threats to reproducibility: Low power

It has been claimed and demonstrated that many (and 
possibly most) of the conclusions drawn from biomedi-
cal research are probably false1. A central cause for this 
important problem is that researchers must publish in 
order to succeed, and publishing is a highly competitive 
enterprise, with certain kinds of findings more likely to 
be published than others. Research that produces novel 
results, statistically significant results (that is, typically 
p < 0.05) and seemingly ‘clean’ results is more likely to be 
published2,3. As a consequence, researchers have strong 
incentives to engage in research practices that make 
their findings publishable quickly, even if those prac-
tices reduce the likelihood that the findings reflect a true 
(that is, non-null) effect4. Such practices include using 
flexible study designs and flexible statistical analyses 
and running small studies with low statistical power1,5. 
A simulation of genetic association studies showed 
that a typical dataset would generate at least one false 
positive result almost 97% of the time6, and two efforts 
to replicate promising findings in biomedicine reveal 
replication rates of 25% or less7,8. Given that these pub-
lishing biases are pervasive across scientific practice, it 
is possible that false positives heavily contaminate the 
neuroscience literature as well, and this problem may 
affect at least as much, if not even more so, the most 
prominent journals9,10.

Here, we focus on one major aspect of the problem: 
low statistical power. The relationship between study 
power and the veracity of the resulting finding is 
under-appreciated. Low statistical power (because of 

low sample size of studies, small effects or both) nega-
tively affects the likelihood that a nominally statistically 
significant finding actually reflects a true effect. We dis-
cuss the problems that arise when low-powered research 
designs are pervasive. In general, these problems can be 
divided into two categories. The first concerns prob-
lems that are mathematically expected to arise even if 
the research conducted is otherwise perfect: in other 
words, when there are no biases that tend to create sta-
tistically significant (that is, ‘positive’) results that are 
spurious. The second category concerns problems that 
reflect biases that tend to co-occur with studies of low 
power or that become worse in small, underpowered 
studies. We next empirically show that statistical power 
is typically low in the field of neuroscience by using evi-
dence from a range of subfields within the neuroscience 
literature. We illustrate that low statistical power is an 
endemic problem in neuroscience and discuss the impli-
cations of this for interpreting the results of individual 
studies.

Low power in the absence of other biases
Three main problems contribute to producing unreliable 
findings in studies with low power, even when all other 
research practices are ideal. They are: the low probability of 
finding true effects; the low positive predictive value (PPV; 
see BOX 1 for definitions of key statistical terms) when an 
effect is claimed; and an exaggerated estimate of the mag-
nitude of the effect when a true effect is discovered. Here, 
we discuss these problems in more detail.
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studies in the neurosciences is very low. The consequences of this include overestimates of 
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for water maze and radial maze, respectively. Our results 
indicate that the median statistical power for the water 
maze studies and the radial maze studies to detect these 
medium to large effects was 18% and 31%, respectively 
(TABLE 2). The average sample size in these studies was 22 
animals for the water maze and 24 for the radial maze 
experiments. Studies of this size can only detect very 
large effects (d = 1.20 for n = 22, and d = 1.26 for n = 24) 
with 80% power — far larger than those indicated by 
the meta-analyses. These animal model studies were 
therefore severely underpowered to detect the summary 
effects indicated by the meta-analyses. Furthermore, the 
summary effects are likely to be inflated estimates of the 
true effects, given the problems associated with small 
studies described above.

The results described in this section are based on 
only two meta-analyses, and we should be appropriately 
cautious in extrapolating from this limited evidence. 
Nevertheless, it is notable that the results are so con-
sistent with those observed in other fields, such as the 
neuroimaging and neuroscience studies that we have 
described above.

Implications
Implications for the likelihood that a research finding 
reflects a true effect. Our results indicate that the aver-
age statistical power of studies in the field of neurosci-
ence is probably no more than between ~8% and ~31%, 
on the basis of evidence from diverse subfields within 
neuro-science. If the low average power we observed 
across these studies is typical of the neuroscience lit-
erature as a whole, this has profound implications for 
the field. A major implication is that the likelihood that 
any nominally significant finding actually reflects a true 
effect is small. As explained above, the probability that 
a research finding reflects a true effect (PPV) decreases 
as statistical power decreases for any given pre-study 
odds (R) and a fixed type I error level. It is easy to show 
the impact that this is likely to have on the reliability of 
findings. FIGURE 4 shows how the PPV changes for a range 
of values for R and for a range of v alues for the average 
power in a field. For effects that are genuinely non-null, 
FIG. 5 shows the degree to which an effect size estimate 
is likely to be inflated in initial studies — owing to the 
winner’s curse phenomenon — for a range of values for 
statistical power.

 The estimates shown in FIGS 4,5 are likely to be opti-
mistic, however, because they assume that statistical 
power and R are the only considerations in determin-
ing the probability that a research finding reflects a true 
effect. As we have already discussed, several other biases 
are also likely to reduce the probability that a research 
finding reflects a true effect. Moreover, the summary 
effect size estimates that we used to determine the statis-
tical power of individual studies are themselves likely to 
be inflated owing to bias — our excess of significance test 
provided clear evidence for this. Therefore, the average 
statistical power of studies in our analysis may in fact be 
even lower than the 8–31% range we observed.

Ethical implications. Low average power in neuro-
science studies also has ethical implications. In our 
analysis of animal model studies, the average sample 
size of 22 animals for the water maze experiments was 
only sufficient to detect an effect size of d = 1.26 with 

Table 1 (cont.) | Characteristics of included meta-analyses

Study k N Summary effect size Power Refs

Median (range) Cohen’s d OR Random or 
fixed effects

Median 
(range)

Yang 3 �� 
��s���� 0.67 NA ���� 
����s����� 67

Yuan 14 ����� 
��s����� ���� Fixed ���� 
����s����� ��

Zafar � ���� 
��s���� 1.07* Random ���� 
����s����� 69

Zhang 12 ����� 
��s���� 1.27 Random ����  
����s����� 70

Zhu � ��� 
��s���� ���� Random ���� 
����s����� 71

The choice of fixed or random effects model was made by the original authors of the meta-analysis. k, number of studies; NA, not 
available; OR, odds ratio. * indicates the relative risk.

Figure 3 | Median power of studies included in 
neuroscience meta-analyses. The figure shows a 
histogram of median study power calculated for each of 
the n = 49 meta-analyses included in our analysis, with the 
number of meta-analyses (N) on the left axis and percent 
of meta-analyses (%) on the right axis. There is a clear 
bimodal distribution; n = 15 (31%) of the meta-analyses 
comprised studies with median power of less than 11%, 
whereas n = 7 (14%) comprised studies with high average 
power in excess of 90%. Despite this bimodality, most 
meta-analyses comprised studies with low statistical 
power: n � �� 
���� JCd OedKCP stWd[ RQYer QH Ness tJCP 
31%. The meta-analyses (n = 7) that comprised studies 
with high average power in excess of 90% had their 
broadly neurological subject matter in common.
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Sample size and power in fMRI studies

Thanks to Sean David and Tal Yarkoni 
for sample size data

Median estimated sample size in 2015 = 28.5
Median effect size with 80% power = 0.75 

 

 
Figure 1​ ​| Sample size estimates and estimated power for fMRI studies.​ a | 904 sample 
sizes over more than 20 years obtained from two sources: 583 sample sizes by manual 
extraction from published meta­analyses​14​, and 548 sample sizes obtained by automated 
extraction from the Neurosynth database​15​ with manual verification. These data demonstrate 
that sample sizes have steadily increased over the last two decades, with a median estimated 
sample size of 28.5 as of 2015. b | Using the sample sizes from the left panel, we estimated the 
standardized effect size required to detect an effect with 80% power for a whole­brain linear 
mixed­effects analysis using a voxelwise 5% familywise error rate threshold from random field 
theory​16​ (see main text for details). Median effect size for which studies were powered to find in 
2015 was 0.75.  Data and code to generate these figures are available at https://osf.io/spr9a/ 
 

 
Figure 2​:​ Small samples can produce misleadingly large effects. 

Seemingly impressive brain­behavior association can arise from completely random data 
through the use of uncorrected statistics and circular ROI analysis to capitalize on the large 
sampling error arising from small samples.  The analysis revealed a cluster in the superior 
temporal gyrus (left panel); signal extracted from that cluster (i.e., using circular analysis) 
showed a very strong correlation between brain and behavior (right panel; r = 0.87).  See main 
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What are realistic effect sizes for fMRI?

Estimated from HCP task data
using combined anatomical + neurosynth ROIs

each relevant region(see Figure B2 below). FSL’s Featquery computes for each voxel the 
% BOLD change in the data within the masks.  

 

 
Figure B2​: The distributions of the observed effect size estimates and BOLD signal change 
estimates for common experimental paradigms.  The boxplot inside the violins represent the 
inter­quartile range (first quartile to third quartile) and the white dot shows the median value. 
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Low power -> unreliable science
Positive Predictive Value (PPV): The probability 
that a positive result is true

First, low power, by definition, means that the chance 
of discovering effects that are genuinely true is low. That 
is, low-powered studies produce more false negatives 
than high-powered studies. When studies in a given 
field are designed with a power of 20%, it means that if 
there are 100 genuine non-null effects to be discovered 
in that field, these studies are expected to discover only 
20 of them11.

Second, the lower the power of a study, the lower 
the probability that an observed effect that passes the 
required threshold of claiming its discovery (that is, 
reaching nominal statistical significance, such as p < 0.05) 
actually reflects a true effect1,12. This probability is called 
the PPV of a claimed discovery. The formula linking the 
PPV to power is:
 
 
where (1 − β) is the power, β is the type II error, α is the 
type I error and R is the pre-study odds (that is, the odds 
that a probed effect is indeed non-null among the effects 
being probed). The formula is derived from a simple 
two-by-two table that tabulates the presence and non-
presence of a non-null effect against significant and 
non-significant research findings1. The formula shows 
that, for studies with a given pre-study odds R, the 
lower the power and the higher the type I error, the 
lower the PPV. And for studies with a given pre-study 
odds R and a given type I error (for example, the tra-
ditional p = 0.05 threshold), the lower the power, the 
lower the PPV.

For example, suppose that we work in a scientific field 
in which one in five of the effects we test are expected to 
be truly non-null (that is, R = 1 / (5 – 1) = 0.25) and that we 
claim to have discovered an effect when we reach p < 0.05; 
if our studies have 20% power, then PPV = 0.20 × 0.25 / 
(0.20 × 0.25 + 0.05) = 0.05 / 0.10 = 0.50; that is, only half of 
our claims for discoveries will be correct. If our studies 
have 80% power, then PPV = 0.80 × 0.25 / (0.80 × 0.25 + 
0.05) = 0.20 / 0.25 = 0.80; that is, 80% of our claims for 
discoveries will be correct. 

Third, even when an underpowered study discovers a 
true effect, it is likely that the estimate of the magnitude 
of that effect provided by that study will be exaggerated. 
This effect inflation is often referred to as the ‘winner’s 
curse’13 and is likely to occur whenever claims of discov-
ery are based on thresholds of statistical significance (for 
example, p < 0.05) or other selection filters (for example, 
a Bayes factor better than a given value or a false-discov-
ery rate below a given value). Effect inflation is worst for 
small, low-powered studies, which can only detect effects 
that happen to be large. If, for example, the true effect is 
medium-sized, only those small studies that, by chance, 
overestimate the magnitude of the effect will pass the 
threshold for discovery. To illustrate the winner’s curse, 
suppose that an association truly exists with an effect size 
that is equivalent to an odds ratio of 1.20, and we are try-
ing to discover it by performing a small (that is, under-
powered) study. Suppose also that our study only has the 
power to detect an odds ratio of 1.20 on average 20% of 
the time. The results of any study are subject to sampling 
variation and random error in the measurements of the 
variables and outcomes of interest. Therefore, on aver-
age, our small study will find an odds ratio of 1.20 but, 
because of random errors, our study may in fact find an 
odds ratio smaller than 1.20 (for example, 1.00) or an odds 
ratio larger than 1.20 (for example, 1.60). Odds ratios of 
1.00 or 1.20 will not reach statistical significance because 
of the small sample size. We can only claim the association 
as nominally significant in the third case, where random 

Box 1 | Key statistical terms

CAMARADES
The Collaborative Approach to Meta-Analysis and Review of Animal Data from 

Experimental Studies (CAMARADES) is a collaboration that aims to reduce bias and 

improve the quality of methods and reporting in animal research. To this end, 

CAMARADES provides a resource for data sharing, aims to provide a web-based 

stratified meta-analysis bioinformatics engine and acts as a repository for completed 

reviews.

Effect size
An effect size is a standardized measure that quantifies the size of the difference 

between two groups or the strength of an association between two variables. As 

standardized measures, effect sizes allow estimates from different studies to be 

compared directly and also to be combined in meta-analyses.

Excess significance
Excess significance is the phenomenon whereby the published literature has an 

excess of statistically significant results that are due to biases in reporting. 

Several mechanisms contribute to reporting bias, including study publication bias, 

where the results of statistically non-significant (‘negative’) studies are left 

unpublished; selective outcome reporting bias, where null results are omitted; and 

selective analysis bias, where data are analysed with different methods that favour 

‘positive’ results.

Fixed and random effects
A fixed-effect meta-analysis assumes that the underlying effect is the same (that is, 

fixed) in all studies and that any variation is due to sampling errors. By contrast, a 

random-effect meta-analysis does not require this assumption and allows for 

heterogeneity between studies. A test of heterogeneity in between-study effects is 

often used to test the fixed-effect assumption.

Meta-analysis
Meta-analysis refers to statistical methods for contrasting and combining results from 

different studies to provide more powerful estimates of the true effect size as opposed 

to a less precise effect size derived from a single study.

Positive predictive value
The positive predictive value (PPV) is the probability that a ‘positive’ research finding 

reflects a true effect (that is, the finding is a true positive). This probability of a research 

finding reflecting a true effect depends on the prior probability of it being true (before 

doing the study), the statistical power of the study and the level of statistical 

significance.

Proteus phenomenon
The Proteus phenomenon refers to the situation in which the first published study is 

often the most biased towards an extreme result (the winner’s curse). Subsequent 

replication studies tend to be less biased towards the extreme, often finding evidence 

of smaller effects or even contradicting the findings from the initial study.

Statistical power
The statistical power of a test is the probability that it will correctly reject the null 

hypothesis when the null hypothesis is false (that is, the probability of not committing a 

type II error or making a false negative decision). The probability of committing a type II 
error is referred to as the false negative rate (β), and power is equal to 1 – β.

Winner’s curse
The winner’s curse refers to the phenomenon whereby the ‘lucky’ scientist who makes a 
discovery is cursed by finding an inflated estimate of that effect. The winner’s curse 

occurs when thresholds, such as statistical significance, are used to determine the 

presence of an effect and is most severe when thresholds are stringent and studies are 

too small and thus have low power.
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80% power, and the average sample size of 24 animals 
for the radial maze experiments was only sufficient to 
detect an effect size of d = 1.20. In order to achieve 80% 
power to detect, in a single study, the most probable true 
effects as indicated by the meta-analysis, a sample size 
of 134 animals would be required for the water maze 
experiment (assuming an effect size of d = 0.49) and 
68 animals for the radial maze experiment (assuming 
an effect size of d = 0.69); to achieve 95% power, these 
sample sizes would need to increase to 220 and 112, 
respectively. What is particularly striking, however, is 
the inefficiency of a continued reliance on small sample 
sizes. Despite the apparently large numbers of animals 
required to achieve acceptable statistical power in these 

experiments, the total numbers of animals actually used 
in the studies contributing to the meta-analyses were 
even larger: 420 for the water maze experiments and 
514 for the radial maze experiments.

There is ongoing debate regarding the appropriate 
balance to strike between using as few animals as possi-
ble in experiments and the need to obtain robust, reliable 
findings. We argue that it is important to appreciate the 
waste associated with an underpowered study — even a 
study that achieves only 80% power still presents a 20% 
possibility that the animals have been sacrificed with-
out the study detecting the underlying true effect. If the 
average power in neuroscience animal model studies is 
between 20–30%, as we observed in our analysis above, 
the ethical implications are clear.

Low power therefore has an ethical dimension — 
unreliable research is inefficient and wasteful. This applies 
to both human and animal research. The principles of the 
‘three Rs’ in animal research (reduce, refine and replace)83 
require appropriate experimental design and statistics 
— both too many and too few animals present an issue 
as they reduce the value of research outputs. A require-
ment for sample size and power calculation is included 
in the Animal Research: Reporting In Vivo Experiments 
(ARRIVE) guidelines84, but such calculations require a 
clear appreciation of the expected magnitude of effects 
being sought.

Of course, it is also wasteful to continue data col-
lection once it is clear that the effect being sought does 
not exist or is too small to be of interest. That is, studies 
are not just wasteful when they stop too early, they are 
also wasteful when they stop too late. Planned, sequen-
tial analyses are sometimes used in large clinical trials 
when there is considerable expense or potential harm 
associated with testing participants. Clinical trials may 
be stopped prematurely in the case of serious adverse 
effects, clear beneficial effects (in which case it would be 
unethical to continue to allocate participants to a placebo 
condition) or if the interim effects are so unimpressive 
that any prospect of a positive result with the planned 
sample size is extremely unlikely85. Within a significance 
testing framework, such interim analyses — and the pro-
tocol for stopping — must be planned for the assump-
tions of significance testing to hold. Concerns have been 
raised as to whether stopping trials early is ever justified 
given the tendency for such a practice to produce inflated 
effect size estimates86. Furthermore, the decision process 
around stopping is not often fully disclosed, increasing 
the scope for researcher degrees of freedom86. Alternative 
approaches exist. For example, within a Bayesian frame-
work, one can monitor the Bayes factor and simply stop 
testing when the evidence is conclusive or when resources 

Figure 4 | Positive predictive value as a function of the 
pre-study odds of association for different levels of 
statistical power. The probability that a research finding 
reflects a true effect — also known as the positive 
predictive value (PPV) — depends on both the pre-study 
odds of the effect being true (the ratio R of ‘true effects’ 
over ‘null effects’ in the scientific field) and the study’s 
statistical power. The PPV can be calculated for given 
vCNWes QH stCtKstKcCN RQYer 
� s β), pre-study odds ratio (R) 
CPd t[Re|+ errQr rCte 
α�� WsKPI tJe HQrOWNC 228 � 
=� s β] × R) 
Š 
=�Ũ β] × R + α). The median statistical power of studies in 
the neuroscience field is optimistically estimated to be 
betYeeP ̀ �� CPd ̀ ���� 6Je HKIWre KNNWstrCtes JQY NQY 
statistical power consistent with this estimated range 
(that is, between 10% and 30%) detrimentally affects the 
association between the probability that a finding reflects 
a true effect (PPV) and pre-study odds, assuming α = 0.05. 
Compared with conditions of appropriate statistical 
RQYer 
tJCt Ks� ����� tJe RrQbCbKNKt[ tJCt C reseCrcJ HKPdKPI 
reflects a true effect is greatly reduced for 10% and 30% 
power, especially if pre-study odds are low. Notably, in an 
exploratory research field such as much of neuroscience, 
the pre-study odds are often low.

Table 2 | Sample size required to detect sex differences in water maze and radial maze performance

Total animals 
used

Required N per study Typical N per study Detectable effect for typical N

80% power 95% power Mean Median 80% power 95% power

Water maze 420 134 220 22 20 d = 1.26 d = 1.62

Radial maze 514 �� 112 24 20 d = 1.20 d = 1.54

Meta-analysis indicated an effect size of Cohen’s d = 0.49 for water maze studies and d = 0.69 for radial maze studies.
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are expended87. Similarly, adopting conservative priors 
can substantially reduce the likelihood of claiming that 
an effect exists when in fact it does not85. At present, 
significance testing remains the dominant framework 
within neuroscience, but the flexibility of alternative (for 
example, Bayesian) approaches means that they should 
be taken seriously by the field.

Conclusions and future directions
A consequence of the remarkable growth in neurosci-
ence over the past 50 years has been that the effects we 
now seek in our experiments are often smaller and more 
subtle than before as opposed to when mostly easily dis-
cernible ‘low-hanging fruit’ were targeted. At the same 

time, computational analysis of very large datasets is now 
relatively straightforward, so that an enormous number of 
tests can be run in a short time on the same dataset. These 
dramatic advances in the flexibility of research design and 
analysis have occurred without accompanying changes to 
other aspects of research design, particularly power. For 
example, the average sample size has not changed sub-
stantially over time88 despite the fact that neuroscientists 
are likely to be pursuing smaller effects. The increase in 
research flexibility and the complexity of study designs89 
combined with the stability of sample size and search for 
increasingly subtle effects has a disquieting consequence: 
a dramatic increase in the likelihood that statistically sig-
nificant findings are spurious. This may be at the root of 
the recent replication failures in the preclinical literature8 
and the correspondingly poor translation of these findings 
into humans90.

Low power is a problem in practice because of the 
normative publishing standards for producing novel, 
significant, clean results and the ubiquity of null 
hypothesis significance testing as the means of evaluat-
ing the truth of research findings. As we have shown, 
these factors result in biases that are exacerbated by low 
power. Ultimately, these biases reduce the reproducibil-
ity of neuroscience findings and negatively affect the 
validity of the accumulated findings. Unfortunately, 
publishing and reporting practices are unlikely to 
change rapidly. Nonetheless, existing scientific practices 
can be improved with small changes or additions that 
approximate key features of the idealized model4,91,92. 
We provide a summary of recommendations for future 
research practice in BOX 2.

Increasing disclosure. False positives occur more fre-
quently and go unnoticed when degrees of freedom in 
data analysis and reporting  are undisclosed5. Researchers 
can improve confidence in published reports by noting 
in the text: “We report how we determined our sample 
size, all data exclusions, all data manipulations, and all 
measures in the study.”7 When such a statement is not 
possible, disclosure of the rationale and justification of 
deviations from what should be common practice (that 
is, reporting sample size, data exclusions, manipula-
tions and measures) will improve readers’ understand-
ing and interpretation of the reported effects and, 
therefore, of what level of confidence in the reported 
effects is appropriate. In clinical trials, there is an 
increasing requirement to adhere to the Consolidated 
Standards of Reporting Trials (CONSORT), and the 
same is true for systematic reviews and meta-analyses, 
for which the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines are 
now being adopted. A number of reporting guidelines 
have been produced for application to diverse study 
designs and tools, and an updated list is maintained 
by the EQUATOR Network93. A ten-item checklist of 
study quality has been developed by the Collaborative 
Approach to Meta-Analysis and Review of Animal Data 
in Experimental Stroke (CAMARADES), but to the best 
of our knowledge, this checklist is not yet widely used in 
primary studies.

Figure 5 | The winner’s curse: effect size inflation as 
a function of statistical power. The winner’s curse 
refers to the phenomenon that studies that find evidence 
of an effect often provide inflated estimates of the size of 
that effect. Such inflation is expected when an effect has 
to pass a certain threshold — such as reaching statistical 
significance — in order for it to have been ‘discovered’. 
Effect inflation is worst for small, low-powered studies, 
which can only detect effects that happen to be large. If, 
for example, the true effect is medium-sized, only those 
small studies that, by chance, estimate the effect to be 
large will pass the threshold for discovery (that is, the 
threshold for statistical significance, which is typically 
set at p < 0.05). In practice, this means that research 
findings of small studies are biased in favour of inflated 
effects. By contrast, large, high-powered studies can 
readily detect both small and large effects and so are less 
biased, as both over- and underestimations of the true 
effect size will pass the threshold for ‘discovery’. We 
optimistically estimate the median statistical power of 
stWdKes KP tJe PeWrQscKePce HKeNd tQ be betYeeP `�� CPd 
~31%. The figure shows simulations of the winner’s curse 
(expressed on the y-axis as relative bias of research 
findings). These simulations suggest that initial effect 
estKOCtes HrQO stWdKes RQYered betYeeP ` �� CPd `��� 
are likely to be inflated by 25% to 50% (shown by the 
arrows in the figure). Inflated effect estimates make it 
difficult to determine an adequate sample size for 
reRNKcCtKQP stWdKes� KPcreCsKPI tJe RrQbCbKNKt[ QH t[Re|++ 
errors. Figure is modified, with permission, from REF. 103 
© (2007) Cell Press.
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Winner’s Curse: overestimation of 
effect sizes for significant results

Button et al., 2013
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• “My result isn’t significant, so I need to add more 
subjects…”
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Sample size flexibility4  Simmons et al. 

Contradicting this intuition, Figure 1 shows the false-posi-
tive rates from additional simulations for a researcher who has 
already collected either 10 or 20 observations within each of 
two conditions, and then tests for significance every 1, 5, 10, 
or 20 per-condition observations after that. The researcher 
stops collecting data either once statistical significance is 
obtained or when the number of observations in each condi-
tion reaches 50.

Figure 1 shows that a researcher who starts with 10 obser-
vations per condition and then tests for significance after every 
new per-condition observation finds a significant effect 22% 
of the time. Figure 2 depicts an illustrative example continuing 
sampling until the number of per-condition observations 
reaches 70. It plots p values from t tests conducted after each 

pair of observations. The example shown in Figure 2 contra-
dicts the often-espoused yet erroneous intuition that if an 
effect is significant with a small sample size then it would nec-
essarily be significant with a larger one.

Solution
As a solution to the flexibility-ambiguity problem, we offer 
six requirements for authors and four guidelines for reviewers 
(see Table 2). This solution substantially mitigates the problem 
but imposes only a minimal burden on authors, reviewers, and 
readers. Our solution leaves the right and responsibility of 
identifying the most appropriate way to conduct research in 
the hands of researchers, requiring only that authors provide 
appropriately transparent descriptions of their methods so that 
reviewers and readers can make informed decisions regarding 
the credibility of their findings. We assume that the vast major-
ity of researchers strive for honesty; this solution will not help 
in the unusual case of willful deception.

Requirements for authors
We propose the following six requirements for authors.

1. Authors must decide the rule for terminating data 
collection before data collection begins and report 
this rule in the article. Following this requirement 
may mean reporting the outcome of power calcu-
lations or disclosing arbitrary rules, such as “we 
decided to collect 100 observations” or “we decided 
to collect as many observations as we could before 
the end of the semester.” The rule itself is secondary, 
but it must be determined ex ante and be reported.
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Fig. 1. Likelihood of obtaining a false-positive result when data collection 
ends upon obtaining significance (p ≤ .05, highlighted by the dotted line).  The 
figure depicts likelihoods for two minimum sample sizes, as a function of the 
frequency with which significance tests are performed.
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Fig. 2. Illustrative simulation of p values obtained by a researcher who 
continuously adds an observation to each of two conditions, conducting 
a t test after each addition. The dotted line highlights the conventional 
significance criterion of p ≤ .05.

Table 2. Simple Solution to the Problem of False-Positive 
Publications

Requirements for authors
 1.   Authors must decide the rule for terminating data collection 

before data collection begins and report this rule in the article.
 2.   Authors must collect at least 20 observations per cell or else 

provide a compelling cost-of-data-collection justification.
 3.  Authors must list all variables collected in a study.
 4.   Authors must report all experimental conditions, including 

failed manipulations.
 5.   If observations are eliminated, authors must also report what 

the statistical results are if those observations are included.
 6.   If an analysis includes a covariate, authors must report the 

statistical results of the analysis without the covariate.
Guidelines for reviewers
 1.  Reviewers should ensure that authors follow the requirements.
 2.  Reviewers should be more tolerant of imperfections in results.
 3.   Reviewers should require authors to demonstrate that their 

results do not hinge on arbitrary analytic decisions.
 4.   If justifications of data collection or analysis are not compel-

ling, reviewers should require the authors to conduct an 
exact replication.

 at CORNELL UNIV on October 26, 2011pss.sagepub.comDownloaded from 

-Simmons et al., 2011, Psychological Science
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Improvement: always predetermine sample size

Neuropower (www.neuropowertools.org)

Data from Shine et al. (2013): fMRI changes associated with freezing in

Parkinson’s disease. Contrast: freezing (motor arrest) vs. normal walking.

Neuropower (www.neuropowertools.org)

Joke Durnez

neuropowertools.org

http://neuropowertools.org
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Threats to reproducibilty: high dimensionality
Correlation between random simulated behavioral variable 

and activation across 28 subjects

~220,000 voxels
p < 0.001
10 voxels cluster threshold

https://github.com/poldracklab/ScanningTheHorizon
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Need for statistical corrections
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Improvement: Insist on proper corrections

• Nonparametric approaches are generally best
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• Using standard FSL 
analysis options 

• 69,120 possible 
analysis workflows

 
Processing step Reason Options Number of 

plausible 
options 

Motion correction Correct for head motion 
during scanning 

Interpolation [linear vs. sinc] 
Reference volume [single vs. 
mean] 

4 

Slice timing 
correction 

Correct for differences in 
acquisition timing of 
different slices 

No/before motion 
correction/after motion 
correction 

3 
 

Field map 
correction 

Correct for distortion due 
to magnetic susceptibility 

Yes/No 2 

Spatial 
smoothing 

Increase SNR for larger 
activations and ensure 
assumptions of Gaussian 
random field theory 

FWHM [4/6/8 mm] 3 

Spatial 
normalization 

Warp individual brain to 
match a group template 

Method [linear/nonlinear] 
 

2 

High pass filter  Remove low-frequency 
nuisance signals from data 

Frequency cutoff [100, 120] 2 

Head motion 
regressors 

Remove remaining signals 
due to head motion via 
statistical model 

Yes/No 
If Yes: 6/12/24 parameters or 
single timepoint “scrubbing” 
regressors 

5 

Hemodynamic 
response 

Account for delayed nature 
of hemodynamic response 
to neuronal activity 

Basis function [single-
gamma, double-gamma] 
Derivatives 
[none/shift/dispersion] 

6 

Temporal 
autocorrelation 
model 

Model for the temporal 
autocorrelation inherent in 
fMRI signals. 

Yes/no 2 

Multiple 
comparison 
correction 

Correct for large number of 
comparisons across the 
brain 

Voxel-based GRF, Cluster-
based GRF, FDR, 
nonparameteric 

4 

Total possible 
workflows 

  69,120 

	
Poldrack et al., submitted

Threats to reproducibility: Methodological flexibility
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Carp Analytic flexibility in fMRI research

FIGURE 1 | Variation in activation strength across analysis pipelines.
Mean activation denotes the average Z -value for each voxel across all
analysis pipelines; analysis range denotes the range of Z -values across all

pipelines. Images are presented in neurological orientation, with the left
hemisphere displayed on the left. Note that color scales differ across
panels.

FIGURE 2 | Variation in activation strength attributable to pre-processing choices. Images are presented in neurological orientation, with the left
hemisphere displayed on the left. Note that color scales differ across panels.
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How likely are published findings in the functional neuroimaging literature to be false?
According to a recent mathematical model, the potential for false positives increases with
the flexibility of analysis methods. Functional MRI (fMRI) experiments can be analyzed
using a large number of commonly used tools, with little consensus on how, when, or
whether to apply each one.This situation may lead to substantial variability in analysis out-
comes.Thus, the present study sought to estimate the flexibility of neuroimaging analysis
by submitting a single event-related fMRI experiment to a large number of unique analysis
procedures. Ten analysis steps for which multiple strategies appear in the literature were
identified, and two to four strategies were enumerated for each step. Considering all pos-
sible combinations of these strategies yielded 6,912 unique analysis pipelines. Activation
maps from each pipeline were corrected for multiple comparisons using five thresholding
approaches, yielding 34,560 significance maps. While some outcomes were relatively con-
sistent across pipelines, others showed substantial methods-related variability in activation
strength, location, and extent. Some analysis decisions contributed to this variability more
than others, and different decisions were associated with distinct patterns of variability
across the brain. Qualitative outcomes also varied with analysis parameters: many con-
trasts yielded significant activation under some pipelines but not others. Altogether, these
results reveal considerable flexibility in the analysis of fMRI experiments.This observation,
when combined with mathematical simulations linking analytic flexibility with elevated false
positive rates, suggests that false positive results may be more prevalent than expected
in the literature. This risk of inflated false positive rates may be mitigated by constraining
the flexibility of analytic choices or by abstaining from selective analysis reporting.

Keywords: fMRI, data analysis, analysis flexibility, selective reporting, false positive results

INTRODUCTION
How common are false positive results in the functional neu-
roimaging literature? Among functional MRI (fMRI) studies that
apply statistical correction for multiple comparisons, most use a
nominal false positive rate of 5%. However,Wager et al. (2009) esti-
mate that between 10 and 40% of fMRI activation results are false
positives. Furthermore, recent empirical (Ioannidis, 2005a) and
mathematical modeling studies (Ioannidis, 2005b) argue that the
true incidence of false positives may far exceed the nominal rate in
the broader scientific literature. Indeed, under certain conditions,
research findings are more likely to be false than true (Ioannidis,
2005b).

As described in a mathematical modeling study by Ioannidis
(2005b), analytic flexibility is a key risk factor for inflated rates of
false positive results when combined with selective reporting of
favorable analysis methods. Analytic flexibility is defined here as
the range of analysis outcomes across different acceptable analysis
methods. Thus, if many analysis pipelines are considered valid,
and if different methods yield different results, then analysis flex-
ibility is high. When analytic flexibility is high, investigators may
elect to report methods that yield favorable outcomes and omit
methods that yield null results. This practice is known as selective
analysis reporting. For example, a researcher may notice that

an experiment yields positive results when analyzed using head
motion regression, but not when analyzed without using head
motion regression. The researcher may then choose to describe
the former analysis but not the latter when reporting the results
of the experiment. Indeed, investigators in some research fields
appear to pursue this strategy. Reviews of randomized clinical tri-
als show that many studies change outcome measures and other
methodological parameters between study design and publication.
Critically, these changes tend to make results appear more signif-
icant than they would have been under the original analysis plan
(Chan et al., 2004a,b; Dwan et al., 2008; Mathieu et al., 2009).

A recent survey of fMRI methods shows that methodological
decisions are highly variable from study to study (Carp, 2012).
Across 241 published fMRI studies, authors reported using 32
unique software packages (e.g., SPM 2, FSL 3.3) and 207 unique
combinations of design and analysis steps (e.g., spatial normal-
ization, head motion regression). Parameter settings also showed
considerable variability within each analysis step. For example,
spatial smoothing kernels ranged from 3 to 12 mm full width
at half maximum, and high-pass filter cutoffs ranged from 0.33
to 750 s. Because many studies did not describe critical analysis
decisions, this survey likely understated the true diversity of
experimental methods in the fMRI literature. In other words,

www.frontiersin.org October 2012 | Volume 6 | Article 149 | 1

6,912 pipelines

Threats to reproducibility: Methodological flexibility
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Multiple comparison correction

• Assessed latest 100 papers matching query for fMRI 
activation studies 

• 65 reported whole-brain activation data 

• Good news 

• only 3 papers reported uncorrected results 

• Bad news 

• 11% of papers analyzed data using SPM/FSL but then 
corrected for multiple comparisons using AFNI’s 
alphasim/3dclustsim 

• Why is this a problem?

Poldrack et al., submitted
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Communal p-hacking?

• Eklund et al. (2016, PNAS) 

• “a 15 year old bug was found in 
3dClustSim while testing the 
three software packages (the bug 
was fixed by the AFNI group as of 
May 2015, during preparation of 
this manuscript). The effect of the 
bug was an underestimation of 
how likely it is to find a cluster of a 
certain size (in other words, the p-
values reported by 3dClustSim 
were too low). “ 

• AFNI also underestimated 
smoothness due to long tails

Fig. 10: Group smoothness estimates (mm full width at half
maximum) for SPM, FSL FLAME and AFNI. The smoothness
estimates originate from two sample t-tests (10 subjects per
group) using the Beijing data (analyzed with the E2 paradigm
and 6 mm smoothing). Note that AFNI estimates the group
smoothness differently compared to SPM and FSL. Also note
that AFNI uses higher order interpolation for motion cor-
rection and spatial normalization, which leads to a lower
smoothness compared to more common linear interpolation.

Fig. 11: Cluster extent thresholds (in cubic millimeters) for
SPM, FSL FLAME, AFNI and a permutation test, for a cluster
defining threshold of p = 0.01 and a familywise cluster error
rate of p = 0.05. The thresholds originate from two sample t-
tests (10 subjects per group) using the Beijing data (analyzed
with the E2 paradigm and 6 mm smoothing). Note that the
permutation threshold can only be directly compared with the
threshold from the FSL software, as first level results from
FSL were used for the non-parametric analyses.

Fig. 14: Ratio of non-parametric to parametric FWE cor-
rected p-values for cluster size inference on 4 task (non-null)
fMRI datasets, for parametric FWE p-values 0.05 � p �
10�4. Results for two CDT are shown, p = 0.01 and p
= 0.001, and larger ratios indicate parametric p-values be-
ing smaller (more significant) than non-parametric p-values
(note the logarithmic scale on the y-axis). Clusters with a
parametric FWE p-value more significant than 10�4 are ex-
cluded because a permutation test with 5000 permutations
can only resolve p-values down to 0.0002, and such p-values
would generate large ratios inherently. These results suggest
cluster size inference with a CDT of p = 0.01 has FWE in-
flated by 2 to almost 3 orders of magnitude, and a CDT of p
= 0.001 has FWE significance inflated by up to 2 orders of
magnitude.

parametric and invalid parametric cluster size inference, we
take ratios larger than 1.0 as evidence of inflated (biased) sig-
nificance in the parametric inferences.

For a cluster defining threshold of p = 0.01 and a clus-
ter size of 400 voxels, the non-parametric cluster p-value is
approximately 10 - 100 times larger compared to the para-
metric p-value. For a cluster defining threshold of p = 0.001
and a cluster size of 100 voxels, the non-parametric cluster
p-value is approximately 1.25 - 10 times larger compared to
the parametric p-value. For contrast 1 of the word and object
processing task data set (Table 3), one cluster has a paramet-
ric p-value of 0.0182 and a non-parametric p-value of 0.249.
This matches the empirically estimated familywise error rate
of FSL OLS, according to Figure 5. These findings indicate
that the problems exist also for task based fMRI data, and not
only for resting state data.

16
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The garden of forking paths

Bishop, 2016
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Improvement: Study pre-registration

• Register sample size and analysis plan up front 

• This does not prevent exploratory analysis 

• But planned and exploratory analyses must be clearly 
delineated in the paper

http://www.russpoldrack.org/2016/09/why-preregistration-no-longer-makes-me.html

http://www.russpoldrack.org/2016/09/why-preregistration-no-longer-makes-me.html
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Improvement: Mapping the garden

nipype.org

Tracking every analysis
allows a full characterization of exploration

http://nipype.org
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Improvement: Quantifying “vibration of effects”

OpenfMRI

Metadata
Imaging 

data

Workflow 1

Training

Test

Workflow 2

Workflow n

Dataset

Test 
out-of-sample
reproducibility

High-performance computing

Focusing on finding generalizable results, 
rather than hitting the p<0.05 jackpot
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Threats to reproducibilty: software errors

Geoffrey Chang

Structure of MsbA from E. coli:
A Homolog of the Multidrug

Resistance ATP Binding Cassette
(ABC) Transporters

Geoffrey Chang* and Christopher B. Roth

Multidrug resistance (MDR) is a serious medical problem and presents a major
challenge to the treatment of disease and the development of novel thera-
peutics. ABC transporters that are associated with multidrug resistance (MDR-
ABC transporters) translocate hydrophobic drugs and lipids from the inner to
the outer leaflet of the cell membrane. To better elucidate the structural basis
for the “flip-flop” mechanism of substrate movement across the lipid bilayer,
we have determined the structure of the lipid flippase MsbA from Escherichia
coli by x-ray crystallography to a resolution of 4.5 angstroms. MsbA is organized
as a homodimer with each subunit containing six transmembrane !-helices and
a nucleotide-binding domain. The asymmetric distribution of charged residues
lining a central chamber suggests a general mechanism for the translocation of
substrate by MsbA and other MDR-ABC transporters. The structure of MsbA can
serve as amodel for theMDR-ABC transporters that confermultidrug resistance
to cancer cells and infectious microorganisms.

The increasing incidence of multidrug re-
sistance is a significant health problem that
has profoundly impacted the treatment of
infectious diseases and cancer. The World
Health Organization has recently reported
that multidrug-resistant bacteria can ac-
count for up to 60% of all hospital-acquired
infections globally (1). Multidrug resis-
tance in the treatment of cancer is respon-
sible for tens of thousands of deaths per
year. Multidrug resistance can be conferred
by a number of transporters that pump
drugs out of cells. Certain multidrug resis-
tance transporters such as the human P-
glycoprotein, MDR1, can transport a di-
verse class of amphipathic drug molecules
(2). There is evidence that some of these
drug transporters may act as phospholipid
flippases and it has been proposed that
multidrug transporters may function as
drug flippases, translocating drugs from the
inner to the outer leaflet of the lipid bilayer.
In an effort to understand the structural
basis of multidrug resistance, we have de-
termined the crystal structure of the multi-
drug resistance transporter homolog,
MsbA, from Escherichia coli (Eco-msbA).
The msbA gene product belongs to a super-
family of transporters that contain an aden-
osine triphosphate (ATP) binding cassette
(ABC), which is also called a nucleotide-
binding domain (NBD) (3, 4 ). ABC trans-
porters translocate a wide variety of sub-

strates, including amino acids, peptides,
ions, sugars, toxins, lipids, and drugs and
are implicated in a number of serious hu-
man diseases, including cystic fibrosis and
several disorders of the immune system
(5–7 ).

MsbA is a member of the MDR-ABC
transporter group by sequence homology and
is more closely related to the mammalian
P-glycoproteins than any other bacterial ABC
transporter (8, 9). Although LmrA from Lac-
tococcus lactis is functionally more similar to
the P-glycoproteins, MsbA is even more con-
served by sequence homology (10, 11).
MDR-ABC transporters have been proposed
to act as “hydrophobic vacuum cleaners” be-
cause of their ability to remove lipids and
drugs from the inner membrane leaflet (12).
MsbA transports lipid A, a major component
of the bacterial outer cell membrane, and is
the only bacterial ABC transporter that is
essential for cell viability (13). Loss of MsbA
from the cell membrane or a mutation that
disrupts transport results in a lethal accumu-
lation of lipid A in the cytoplasmic leaflet
(14, 15). Several bacterial homologs of msbA
that include the flippase ValA from Fran-
cisella novicida and LmrA, have been report-
ed in over 30 divergent prokaryotic species
(16 ).

The overall organization of MsbA is consis-
tent with most bacterial MDR-ABC transport-
ers and its amino acid sequence is remarkably
similar to several mammalian P-glycoproteins
involved in multidrug resistance. All known
ABC transporters are composed of four mod-
ules, including two membrane spanning regions
and two NBDs. Unlike the mammalian P-gly-

coproteins, which have these components fused
into a single polypeptide, the msbA gene en-
codes a half transporter that contains a single
membrane spanning region fused with a NBD.
MsbA is assembled as a homodimer with a total
molecular mass of 129.2 kD. Hydropathy anal-
ysis indicates six membrane spanning regions
with the NBD located on the cytoplasmic side
of the cell membrane (17). The primary role of
the transmembrane domain is to recognize and
transport substrates across the lipid bilayer. The
ABC, which is the hallmark of the MDR-ABC
transporter family and is located in the NBD,
couples the energy of ATP hydrolysis to sub-
strate translocation. Although the NBD struc-
tures of the histidine transporter (HisP), the
maltose transporter (MalK), the DNA repair
enzyme (Rad50), and the branched-chain ami-
no acid transporter from Methanococcus jann-
aschii (MJ1267) have been determined, the
structural basis for substrate translocation
through the cell membrane is not clear (18–21).

The structure of MsbA establishes the
general architecture of the MDR-ABC
transporter family, and facilitates our un-
derstanding of the fundamental flipping
mechanism that moves hydrophobic sub-
strates from the inner to the outer mem-
brane leaflet. The protein sequence of Eco-
msbA is 36 and 32% identical to the NH2-
terminal and COOH-terminal halves of hu-
man MDR1, respectively (Fig. 1) (22).
Human MDR3, which is a phosphatidyl-
choline flippase and is 73% identical in
protein sequence to human MDR1, is 31%
identical in protein sequence to Eco-msbA
(23). The similarity in protein sequence and
function between MsbA and human MDR1/
MDR3 suggests a common evolutionary
origin and, therefore, they may have com-
mon mechanisms by which they catalyze
the flipping of substrates. The crystal struc-
ture of Eco-msbA determined to 4.5 Å in
resolution provides a framework for deci-
phering P-glycoproteins and suggests a
general mechanism for the transport of sub-
strate across the lipid bilayer.
Structure determination. Membrane

protein x-ray crystallography of transporters
and ion channels presents new challenges
owing to the disorder caused by detergent and
the inherent movement of transmembrane
!-helices. We have, therefore, adopted a
strategy of rapidly exploring crystallization
space by cloning, overexpressing, and puri-
fying more than 20 full-length bacterial trans-
porters and their homologs derived from sev-
eral MDR-ABC transporter families and 12
bacterial species (24 ). Our expectation was
that one or more of these natural variants
would be more optimal for protein expres-
sion, purification, and crystal formation.
Each full-length MDR-ABC transporter was
cloned and recombinantly expressed in a
BL21 strain of E. coli (25). Although func-
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*To whom correspondence should be addressed. E-
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Structure of MsbA from E. coli:
A Homolog of the Multidrug

Resistance ATP Binding Cassette
(ABC) Transporters

Geoffrey Chang* and Christopher B. Roth

Multidrug resistance (MDR) is a serious medical problem and presents a major
challenge to the treatment of disease and the development of novel thera-
peutics. ABC transporters that are associated with multidrug resistance (MDR-
ABC transporters) translocate hydrophobic drugs and lipids from the inner to
the outer leaflet of the cell membrane. To better elucidate the structural basis
for the “flip-flop” mechanism of substrate movement across the lipid bilayer,
we have determined the structure of the lipid flippase MsbA from Escherichia
coli by x-ray crystallography to a resolution of 4.5 angstroms. MsbA is organized
as a homodimer with each subunit containing six transmembrane !-helices and
a nucleotide-binding domain. The asymmetric distribution of charged residues
lining a central chamber suggests a general mechanism for the translocation of
substrate by MsbA and other MDR-ABC transporters. The structure of MsbA can
serve as amodel for theMDR-ABC transporters that confermultidrug resistance
to cancer cells and infectious microorganisms.

The increasing incidence of multidrug re-
sistance is a significant health problem that
has profoundly impacted the treatment of
infectious diseases and cancer. The World
Health Organization has recently reported
that multidrug-resistant bacteria can ac-
count for up to 60% of all hospital-acquired
infections globally (1). Multidrug resis-
tance in the treatment of cancer is respon-
sible for tens of thousands of deaths per
year. Multidrug resistance can be conferred
by a number of transporters that pump
drugs out of cells. Certain multidrug resis-
tance transporters such as the human P-
glycoprotein, MDR1, can transport a di-
verse class of amphipathic drug molecules
(2). There is evidence that some of these
drug transporters may act as phospholipid
flippases and it has been proposed that
multidrug transporters may function as
drug flippases, translocating drugs from the
inner to the outer leaflet of the lipid bilayer.
In an effort to understand the structural
basis of multidrug resistance, we have de-
termined the crystal structure of the multi-
drug resistance transporter homolog,
MsbA, from Escherichia coli (Eco-msbA).
The msbA gene product belongs to a super-
family of transporters that contain an aden-
osine triphosphate (ATP) binding cassette
(ABC), which is also called a nucleotide-
binding domain (NBD) (3, 4 ). ABC trans-
porters translocate a wide variety of sub-

strates, including amino acids, peptides,
ions, sugars, toxins, lipids, and drugs and
are implicated in a number of serious hu-
man diseases, including cystic fibrosis and
several disorders of the immune system
(5–7 ).

MsbA is a member of the MDR-ABC
transporter group by sequence homology and
is more closely related to the mammalian
P-glycoproteins than any other bacterial ABC
transporter (8, 9). Although LmrA from Lac-
tococcus lactis is functionally more similar to
the P-glycoproteins, MsbA is even more con-
served by sequence homology (10, 11).
MDR-ABC transporters have been proposed
to act as “hydrophobic vacuum cleaners” be-
cause of their ability to remove lipids and
drugs from the inner membrane leaflet (12).
MsbA transports lipid A, a major component
of the bacterial outer cell membrane, and is
the only bacterial ABC transporter that is
essential for cell viability (13). Loss of MsbA
from the cell membrane or a mutation that
disrupts transport results in a lethal accumu-
lation of lipid A in the cytoplasmic leaflet
(14, 15). Several bacterial homologs of msbA
that include the flippase ValA from Fran-
cisella novicida and LmrA, have been report-
ed in over 30 divergent prokaryotic species
(16 ).

The overall organization of MsbA is consis-
tent with most bacterial MDR-ABC transport-
ers and its amino acid sequence is remarkably
similar to several mammalian P-glycoproteins
involved in multidrug resistance. All known
ABC transporters are composed of four mod-
ules, including two membrane spanning regions
and two NBDs. Unlike the mammalian P-gly-

coproteins, which have these components fused
into a single polypeptide, the msbA gene en-
codes a half transporter that contains a single
membrane spanning region fused with a NBD.
MsbA is assembled as a homodimer with a total
molecular mass of 129.2 kD. Hydropathy anal-
ysis indicates six membrane spanning regions
with the NBD located on the cytoplasmic side
of the cell membrane (17). The primary role of
the transmembrane domain is to recognize and
transport substrates across the lipid bilayer. The
ABC, which is the hallmark of the MDR-ABC
transporter family and is located in the NBD,
couples the energy of ATP hydrolysis to sub-
strate translocation. Although the NBD struc-
tures of the histidine transporter (HisP), the
maltose transporter (MalK), the DNA repair
enzyme (Rad50), and the branched-chain ami-
no acid transporter from Methanococcus jann-
aschii (MJ1267) have been determined, the
structural basis for substrate translocation
through the cell membrane is not clear (18–21).

The structure of MsbA establishes the
general architecture of the MDR-ABC
transporter family, and facilitates our un-
derstanding of the fundamental flipping
mechanism that moves hydrophobic sub-
strates from the inner to the outer mem-
brane leaflet. The protein sequence of Eco-
msbA is 36 and 32% identical to the NH2-
terminal and COOH-terminal halves of hu-
man MDR1, respectively (Fig. 1) (22).
Human MDR3, which is a phosphatidyl-
choline flippase and is 73% identical in
protein sequence to human MDR1, is 31%
identical in protein sequence to Eco-msbA
(23). The similarity in protein sequence and
function between MsbA and human MDR1/
MDR3 suggests a common evolutionary
origin and, therefore, they may have com-
mon mechanisms by which they catalyze
the flipping of substrates. The crystal struc-
ture of Eco-msbA determined to 4.5 Å in
resolution provides a framework for deci-
phering P-glycoproteins and suggests a
general mechanism for the transport of sub-
strate across the lipid bilayer.
Structure determination. Membrane

protein x-ray crystallography of transporters
and ion channels presents new challenges
owing to the disorder caused by detergent and
the inherent movement of transmembrane
!-helices. We have, therefore, adopted a
strategy of rapidly exploring crystallization
space by cloning, overexpressing, and puri-
fying more than 20 full-length bacterial trans-
porters and their homologs derived from sev-
eral MDR-ABC transporter families and 12
bacterial species (24 ). Our expectation was
that one or more of these natural variants
would be more optimal for protein expres-
sion, purification, and crystal formation.
Each full-length MDR-ABC transporter was
cloned and recombinantly expressed in a
BL21 strain of E. coli (25). Although func-
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Structure of the ABC Transporter
MsbA inComplexwithADPIVanadate

and Lipopolysaccharide
Christopher L. Reyes and Geoffrey Chang*

Select members of the adenosine triphosphate (ATP)–binding cassette (ABC)
transporter family couple ATP binding and hydrolysis to substrate efflux and
confer multidrug resistance. We have determined the x-ray structure of MsbA
in complex with magnesium, adenosine diphosphate, and inorganic vanadate
(MgIADPIVi) and the rough-chemotype lipopolysaccharide, Ra LPS. The
structure supports a model involving a rigid-body torque of the two trans-
membrane domains during ATP hydrolysis and suggests a mechanism by
which the nucleotide-binding domain communicates with the transmembrane
domain. We propose a lipid ‘‘flip-flop’’ mechanism in which the sugar groups
are sequestered in the chamber while the hydrophobic tails are dragged
through the lipid bilayer.

Multidrug resistance is an alarming and rapidly
growing obstacle in the treatment of infectious
diseases, human immunodeficiency virus (HIV),
malaria, and cancer (1). Drug-resistant bacterial
strains that cause gonorrhea, pneumonia, chol-
era, and tuberculosis are widespread and dif-
ficult to treat (2). In humans, a similar drug
efflux mechanism is a major reason for the
failure of several chemotherapeutics in the treat-
ment of cancers. Found ubiquitously in both
bacteria and humans, ABC transporters have
been implicated in both antibiotic and cancer
drug resistance and represent key targets for the
development of agents to reverse multidrug
resistance (3, 4). Several MDR ABC efflux
pumps have been shown to extrude both lipids
and drug molecules, which suggests a common
transport mechanism for amphipathic com-
pounds across the cell membrane (5, 6).

MsbA is an essential bacterial ABC trans-
porter that transports lipid A and lipopoly-
saccharide (LPS) to the outer membrane (7–10)
and that has been shown to have overlapping
substrate specificity with the multidrug-resistant
ABC (MDR ABC) transporter LmrA and with
humanP-glycoprotein (P-gp) (11). MsbA adeno-
sine triphosphatase (ATPase) hydrolysis is stim-
ulated by LPS and lipid A and also shows
vanadate-inhibited activity (12). LPS makes
up the outer leaflet of the outer membrane in
Gram-negative bacteria and potently activates
the mammalian innate immune system in
response to bacterial infections; it can cause
septic shock (13–15). ABC transporters are
minimally composed of two transmembrane
domains (TMDs) that encode substrate speci-
ficity and a pair of nucleotide-binding domains
(NBDs) with conserved structural features.
Comparison of the x-ray structures of MsbA
and the vitamin B12 ABC importer, BtuCD,
suggests that differences in substrate specific-
ities are a consequence of structurally diver-
gent TMDs (16–18). These structures, along
with those derived from electron microscopy

(EM) of other MDR ABC transporters, reveal
that large conformational changes are possible
in both the TMDs and NBDs (19–23).

Despite attempts to model the structural
changes of MsbA and other MDR ABC trans-
porters, a detailed view of conformational rear-
rangements during ATP hydrolysis and substrate
translocation has remained elusive (24). What
are the conformational changes of the TMDs
during the catalytic cycle? What residues are
involved in substrate binding and release? And
what specific role does nucleotide binding and
hydrolysis play during the catalytic cycle? To
address these questions, we describe the struc-
ture of MsbA from Salmonella typhimurium
in complex with adenosine 5¶-diphosphate
and inorganic vanadate (ADPIVi), Mg2þ, and
rough-chemotype (Ra) lipopolysaccharide
(Ra LPS). The structure provides evidence
for an intermediate after ATP hydrolysis and a
molecular basis for coupling ATP hydrolysis
with amphipathic substrate transport.

Crystals of MsbA in complex with
MgIADPIVi and Ra LPS were grown using
detergent-solubilized protein incubated with Ra
LPS purified from S. typhimurium. ATP, Mg2þ,
and boiled sodium orthovanadate were added
to favor the transition state conformation be-
fore crystallization (25). Mass spectrometry
on washed crystals indicated the presence of
Ra LPS, nucleotide, and vanadate. The struc-
ture was determined by single-wavelength
anomalous dispersion (SAD), and the electron
density maps were improved by using non-
crystallographic symmetry averaging to a res-
olution of 4.2 ) (see table S1) (26). The
asymmetric unit revealed two dimers of MsbA
with clear electron density corresponding to a
nucleotide and Ra LPS. The TMDs in each
dimer exhibit a 30- torque relative to the mo-
lecular two-fold axis and an extensive inter-
digitation of the helices (Fig. 1, A and B). A
chemical model with good geometry was built
with Rcryst of 28% and Rfree of 33%.

In this structure, each dimer contains two
bound LPS molecules located at the protein-
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Structure of the ABC Transporter
MsbA inComplexwithADPIVanadate

and Lipopolysaccharide
Christopher L. Reyes and Geoffrey Chang*

Select members of the adenosine triphosphate (ATP)–binding cassette (ABC)
transporter family couple ATP binding and hydrolysis to substrate efflux and
confer multidrug resistance. We have determined the x-ray structure of MsbA
in complex with magnesium, adenosine diphosphate, and inorganic vanadate
(MgIADPIVi) and the rough-chemotype lipopolysaccharide, Ra LPS. The
structure supports a model involving a rigid-body torque of the two trans-
membrane domains during ATP hydrolysis and suggests a mechanism by
which the nucleotide-binding domain communicates with the transmembrane
domain. We propose a lipid ‘‘flip-flop’’ mechanism in which the sugar groups
are sequestered in the chamber while the hydrophobic tails are dragged
through the lipid bilayer.

Multidrug resistance is an alarming and rapidly
growing obstacle in the treatment of infectious
diseases, human immunodeficiency virus (HIV),
malaria, and cancer (1). Drug-resistant bacterial
strains that cause gonorrhea, pneumonia, chol-
era, and tuberculosis are widespread and dif-
ficult to treat (2). In humans, a similar drug
efflux mechanism is a major reason for the
failure of several chemotherapeutics in the treat-
ment of cancers. Found ubiquitously in both
bacteria and humans, ABC transporters have
been implicated in both antibiotic and cancer
drug resistance and represent key targets for the
development of agents to reverse multidrug
resistance (3, 4). Several MDR ABC efflux
pumps have been shown to extrude both lipids
and drug molecules, which suggests a common
transport mechanism for amphipathic com-
pounds across the cell membrane (5, 6).

MsbA is an essential bacterial ABC trans-
porter that transports lipid A and lipopoly-
saccharide (LPS) to the outer membrane (7–10)
and that has been shown to have overlapping
substrate specificity with the multidrug-resistant
ABC (MDR ABC) transporter LmrA and with
humanP-glycoprotein (P-gp) (11). MsbA adeno-
sine triphosphatase (ATPase) hydrolysis is stim-
ulated by LPS and lipid A and also shows
vanadate-inhibited activity (12). LPS makes
up the outer leaflet of the outer membrane in
Gram-negative bacteria and potently activates
the mammalian innate immune system in
response to bacterial infections; it can cause
septic shock (13–15). ABC transporters are
minimally composed of two transmembrane
domains (TMDs) that encode substrate speci-
ficity and a pair of nucleotide-binding domains
(NBDs) with conserved structural features.
Comparison of the x-ray structures of MsbA
and the vitamin B12 ABC importer, BtuCD,
suggests that differences in substrate specific-
ities are a consequence of structurally diver-
gent TMDs (16–18). These structures, along
with those derived from electron microscopy

(EM) of other MDR ABC transporters, reveal
that large conformational changes are possible
in both the TMDs and NBDs (19–23).

Despite attempts to model the structural
changes of MsbA and other MDR ABC trans-
porters, a detailed view of conformational rear-
rangements during ATP hydrolysis and substrate
translocation has remained elusive (24). What
are the conformational changes of the TMDs
during the catalytic cycle? What residues are
involved in substrate binding and release? And
what specific role does nucleotide binding and
hydrolysis play during the catalytic cycle? To
address these questions, we describe the struc-
ture of MsbA from Salmonella typhimurium
in complex with adenosine 5¶-diphosphate
and inorganic vanadate (ADPIVi), Mg2þ, and
rough-chemotype (Ra) lipopolysaccharide
(Ra LPS). The structure provides evidence
for an intermediate after ATP hydrolysis and a
molecular basis for coupling ATP hydrolysis
with amphipathic substrate transport.

Crystals of MsbA in complex with
MgIADPIVi and Ra LPS were grown using
detergent-solubilized protein incubated with Ra
LPS purified from S. typhimurium. ATP, Mg2þ,
and boiled sodium orthovanadate were added
to favor the transition state conformation be-
fore crystallization (25). Mass spectrometry
on washed crystals indicated the presence of
Ra LPS, nucleotide, and vanadate. The struc-
ture was determined by single-wavelength
anomalous dispersion (SAD), and the electron
density maps were improved by using non-
crystallographic symmetry averaging to a res-
olution of 4.2 ) (see table S1) (26). The
asymmetric unit revealed two dimers of MsbA
with clear electron density corresponding to a
nucleotide and Ra LPS. The TMDs in each
dimer exhibit a 30- torque relative to the mo-
lecular two-fold axis and an extensive inter-
digitation of the helices (Fig. 1, A and B). A
chemical model with good geometry was built
with Rcryst of 28% and Rfree of 33%.

In this structure, each dimer contains two
bound LPS molecules located at the protein-
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within 30 My (30) of Earth_s formation. Our
results support the view that continental crust
was at least a component of the enriched coun-
terpart that formed at È4.5 Ga, but this original
crust was largely recycled back into the mantle
by the onset of the Archean (G4 Ga).
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X-ray Structure of the EmrE
Multidrug Transporter in Complex

with a Substrate
Owen Pornillos, Yen-Ju Chen, Andy P. Chen, Geoffrey Chang*

EmrE is a prototype of the Small Multidrug Resistance family of efflux trans-
porters and actively expels positively charged hydrophobic drugs across the inner
membrane of Escherichia coli. Here, we report the x-ray crystal structure, at 3.7
angstrom resolution, of one conformational state of the EmrE transporter in
complex with a translocation substrate, tetraphenylphosphonium. Two EmrE
polypeptides form a homodimeric transporter that binds substrate at the di-
merization interface. The two subunits have opposite orientations in the mem-
brane and adopt slightly different folds, forming an asymmetric antiparallel
dimer. This unusual architecture likely confers unidirectionality to transport by
creating an asymmetric substrate translocation pathway. On the basis of
available structural data, we propose a model for the proton-dependent drug
efflux mechanism of EmrE.

A major obstacle to effective treatment of bac-
terial infections is the emergence of strains that
are resistant to available antibiotics. Of partic-
ular concern are multidrug-resistant strains that
cause common diseases such as tuberculosis,
gonorrhea, and hospital-acquired staphylococ-
cal infections (1). Multidrug resistance arises,
in part, through the action of integral mem-
brane proteins called multidrug transporters
(1, 2). Each of these transporters can actively
expel a wide variety of drugs and toxic com-
pounds from the cell. There are two broad

classes of transporters: ATP-binding cassette
(ABC) proteins directly couple drug efflux to
adenosine 5¶-triphosphate (ATP) hydrolysis,
whereas secondary transporters use the energy
derived from proton or cation electrochemical
gradients across the lipid bilayer.

EmrE is a proton-dependent secondary trans-
porter fromEscherichia coli and is a prototype of
the Small Multidrug Resistance (SMR) family
(3, 4). SMRs represent the smallest transporters
in nature; each polypeptide has only 105 to
120 amino acid residues and four transmem-
brane helices, and forms homo- or hetero-
oligomers (3). EmrE is well documented to
function as a homooligomer (5–9) and confers
resistance to positively charged hydrophobic
antibiotics, such as tetracycline, ethidium, and
tetraphenylphosphonium (TPP) (3, 4). EmrE

exchanges two or more protons per drug mol-
ecule through a Bhydrophobic[ translocation
pathway (10, 11).

The general model for multidrug efflux by
EmrE and other secondary transporters is the
alternating access mechanism (12, 13). In this
model, the EmrE transporter has at least two
conformations, inward-facing and outward-
facing, with the drug-binding site accessible to
the cytoplasm or periplasm, respectively. Inter-
conversion between the two conformations is
promoted by drug and/or proton binding. Here,
we describe the x-ray crystal structure of one
conformation of the EmrE transporter in
complex with the drug TPP. The structure
was determined to 3.7 ) resolution by anoma-
lous dispersion methods, using the arsonium
analog of TPP and selenomethionine (SeMet)–
substituted proteins (Fig. 1A) (14).

SeMet-labeled proteins used for this
study were produced in a cell-free system,
because SeMet-EmrE did not express well in
vivo. Briefly, EmrE was expressed by use of
the T7 promoter in E. coli lysates supple-
mented with nucleotide triphosphates, T7
polymerase, and appropriate amino acids
(14). Experimental maps derived from Se and
As data are very well correlated, indicating
that in vitro– and in vivo–expressed EmrE
proteins adopt a similar structure. Our work
shows that cell-free methods are a viable
alternative to traditional large-scale protein ex-
pression systems.

Consistent with biochemical studies show-
ing that EmrE is primarily a dimer in detergent
and binds drugs with a 2:1 protein/drug ratio
(9, 15), the asymmetric unit of the EmrE-TPP
crystal is composed of two molecules of EmrE
and one molecule of TPP (Fig. 1). The min-
imally functional unit of EmrE is therefore
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within 30 My (30) of Earth_s formation. Our
results support the view that continental crust
was at least a component of the enriched coun-
terpart that formed at È4.5 Ga, but this original
crust was largely recycled back into the mantle
by the onset of the Archean (G4 Ga).
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X-ray Structure of the EmrE
Multidrug Transporter in Complex

with a Substrate
Owen Pornillos, Yen-Ju Chen, Andy P. Chen, Geoffrey Chang*

EmrE is a prototype of the Small Multidrug Resistance family of efflux trans-
porters and actively expels positively charged hydrophobic drugs across the inner
membrane of Escherichia coli. Here, we report the x-ray crystal structure, at 3.7
angstrom resolution, of one conformational state of the EmrE transporter in
complex with a translocation substrate, tetraphenylphosphonium. Two EmrE
polypeptides form a homodimeric transporter that binds substrate at the di-
merization interface. The two subunits have opposite orientations in the mem-
brane and adopt slightly different folds, forming an asymmetric antiparallel
dimer. This unusual architecture likely confers unidirectionality to transport by
creating an asymmetric substrate translocation pathway. On the basis of
available structural data, we propose a model for the proton-dependent drug
efflux mechanism of EmrE.

A major obstacle to effective treatment of bac-
terial infections is the emergence of strains that
are resistant to available antibiotics. Of partic-
ular concern are multidrug-resistant strains that
cause common diseases such as tuberculosis,
gonorrhea, and hospital-acquired staphylococ-
cal infections (1). Multidrug resistance arises,
in part, through the action of integral mem-
brane proteins called multidrug transporters
(1, 2). Each of these transporters can actively
expel a wide variety of drugs and toxic com-
pounds from the cell. There are two broad

classes of transporters: ATP-binding cassette
(ABC) proteins directly couple drug efflux to
adenosine 5¶-triphosphate (ATP) hydrolysis,
whereas secondary transporters use the energy
derived from proton or cation electrochemical
gradients across the lipid bilayer.

EmrE is a proton-dependent secondary trans-
porter fromEscherichia coli and is a prototype of
the Small Multidrug Resistance (SMR) family
(3, 4). SMRs represent the smallest transporters
in nature; each polypeptide has only 105 to
120 amino acid residues and four transmem-
brane helices, and forms homo- or hetero-
oligomers (3). EmrE is well documented to
function as a homooligomer (5–9) and confers
resistance to positively charged hydrophobic
antibiotics, such as tetracycline, ethidium, and
tetraphenylphosphonium (TPP) (3, 4). EmrE

exchanges two or more protons per drug mol-
ecule through a Bhydrophobic[ translocation
pathway (10, 11).

The general model for multidrug efflux by
EmrE and other secondary transporters is the
alternating access mechanism (12, 13). In this
model, the EmrE transporter has at least two
conformations, inward-facing and outward-
facing, with the drug-binding site accessible to
the cytoplasm or periplasm, respectively. Inter-
conversion between the two conformations is
promoted by drug and/or proton binding. Here,
we describe the x-ray crystal structure of one
conformation of the EmrE transporter in
complex with the drug TPP. The structure
was determined to 3.7 ) resolution by anoma-
lous dispersion methods, using the arsonium
analog of TPP and selenomethionine (SeMet)–
substituted proteins (Fig. 1A) (14).

SeMet-labeled proteins used for this
study were produced in a cell-free system,
because SeMet-EmrE did not express well in
vivo. Briefly, EmrE was expressed by use of
the T7 promoter in E. coli lysates supple-
mented with nucleotide triphosphates, T7
polymerase, and appropriate amino acids
(14). Experimental maps derived from Se and
As data are very well correlated, indicating
that in vitro– and in vivo–expressed EmrE
proteins adopt a similar structure. Our work
shows that cell-free methods are a viable
alternative to traditional large-scale protein ex-
pression systems.

Consistent with biochemical studies show-
ing that EmrE is primarily a dimer in detergent
and binds drugs with a 2:1 protein/drug ratio
(9, 15), the asymmetric unit of the EmrE-TPP
crystal is composed of two molecules of EmrE
and one molecule of TPP (Fig. 1). The min-
imally functional unit of EmrE is therefore
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Aquaculture in 

Offshore Zones 

THE EDITORIAL BY ROSAMOND NAYLOR,
“Offshore aquaculture legislation” (8 Sept.,

p. 1363), suggests that the motivation for

moving aquaculture into the open ocean is

that “marine f ish farming near the shore

is limited by state regulations.” Although

unworkable regulations may exist in a few

states, in the larger scheme this is irrele-

vant. Of the offshore aquaculture projects

currently under way, none are occurring in

the U.S. Exclusive Economic Zone (EEZ);

rather, they are happening in state waters.

Even historically, only two aquaculture

projects have ever occurred in federal

waters (1). 

Much of Naylor’s stated concern over

offshore aquaculture is based on historical

experience with near-shore fish farms. This

is in spite of years of more relevant offshore

operations that reveal little, if any, negative

impact on the environment or local ecosys-

tems (2, 3). Naylor criticizes the National

Offshore Aquaculture Act of 2005 because

it lacks specific environmental standards.

Yet, she recommends California’s recent

Sustainable Oceans Act as a legislative

model, although it is similarly silent, leaving

those details to rule-making in response to

the best available science. 

Naylor criticizes the use of fishmeal as

an aquaculture ingredient, ignoring the fact

that industrial fisheries are well managed

and would occur with or without aquacul-

ture’s demand. Naylor ignores the higher

efficiency of using fishmeal to feed fish

compared with its use in land-based live-

stock operations (4). Also ignored is the

inefficiency of using small pelagic fish in

the natural setting to feed predator fish (5). 

Researchers and entrepreneurs currently

developing the technologies needed for offshore

aquaculture share a vision of a well-managed

industry governed by regulations with a rational

basis in the ecology of the oceans and the eco-

nomic realities of the marketplace.
CLIFFORD A. GOUDEY

Massachusetts Institute of Technology, Cambridge, MA
02139, USA. 

References and Notes
1. The SeaStead project a decade ago, four miles off

Massachusetts (see www.nmfs.noaa.gov/mb/sk/
saltonstallken/enhancement.htm) and the recent
Offshore Aquaculture Consortium experimental cage
operation 22 miles off Mississippi (see www.masgc.
org/oac/).

2. See www.lib.noaa.gov/docaqua/reports_noaaresearch/
hooarrprept.htm/.

3. See www.blackpearlsinc.com/PDF/hoarpi.pdf.
4. See www.salmonoftheamericas.com/env_food.html.
5. D. Pauly, V. Christensen, Nature 374, 255 (2002).

IN HER PROVOCATIVE EDITORIAL “OFFSHORE
aquaculture legislation” (8 Sept., p. 1363),

R. Naylor raises valid points regarding regu-

lation of oceanic aquaculture, since it is

sure to grow in the future because of dwin-

dling global fishery supplies. This growth is
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Retraction 

WE WISH TO RETRACT OUR RESEARCH ARTICLE “STRUCTURE OF
MsbA from E. coli: A homolog of the multidrug resistance ATP bind-

ing cassette (ABC) transporters” and both of our Reports “Structure of

the ABC transporter MsbA in complex with ADP•vanadate and

lipopolysaccharide” and “X-ray structure of the EmrE multidrug trans-

porter in complex with a substrate” (1–3).

The recently reported structure of Sav1866 (4) indicated that our

MsbA structures (1, 2, 5) were incorrect in both the hand of the struc-

ture and the topology. Thus, our biological interpretations based on

these inverted models for MsbA are invalid.

An in-house data reduction program introduced a change in sign for

anomalous differences. This program, which was not part of a conven-

tional data processing package, converted the anomalous pairs (I+ and

I-) to (F- and F+), thereby introducing a sign change. As the diffrac-

tion data collected for each set of MsbA crystals and for the EmrE

crystals were processed with the same program, the structures reported

in (1–3, 5, 6) had the wrong hand.

The error in the topology of the original MsbA structure was a con-

sequence of the low resolution of the data as well as breaks in the elec-

tron density for the connecting loop regions. Unfortunately, the use of

the multicopy refinement procedure still allowed us to obtain reason-

able refinement values for the wrong structures.

The Protein Data Bank (PDB) files 1JSQ, 1PF4, and 1Z2R for

MsbA and 1S7B and 2F2M for EmrE have been moved to the archive

of obsolete PDB entries. The MsbA and EmrE structures will be

recalculated from the original data using the proper sign for the anom-

alous differences, and the new Ca coordinates and structure factors

will be deposited.

We very sincerely regret the confusion that these papers have

caused and, in particular, subsequent research efforts that were unpro-

ductive as a result of our original findings.
GEOFFREY CHANG, CHRISTOPHER B. ROTH, 

CHRISTOPHER L. REYES, OWEN PORNILLOS, 

YEN-JU CHEN, ANDY P. CHEN 

Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. 
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Threats to reproducibilty: software errors



poldracklab.org

Small errors can have big effects

http://www.russpoldrack.org/2013/02/anatomy-of-coding-error.html

# 23-class classification problem

skf=StratifiedKFold(labels,8)

if trainsvm:
    pred=N.zeros(len(labels))
    for train,test in skf:
        clf=LinearSVC()
        clf.fit(data[train],labels[train])
        pred[test]=clf.predict(data[test])

Results:
93% accuracy

data[:,train]

Results:
53% accuracy

data[:,test]



CORRECTION

Correction: The Role of Conspiracist Ideation
and Worldviews in Predicting Rejection of
Science
Stephan Lewandowsky, Gilles E. Gignac, Klaus Oberauer

This Correction is being published to provide a clarification regarding ethical approval for the
inclusion of minors in this study, and to address concerns regarding the inclusion of age outli-
ers in the dataset and some analyses that were discovered by a reader. The authors thank the
reader for drawing this problem to our attention. In addition, the authors discovered a slight
error in the specification of the single-indicator latent variable model for Conservatism, which
necessitated an update of the fit statistics for two of the models and a slight change in the
reported regression weights and correlations. A revised version of Fig 2 is included below. Note
that none of the conclusions in the article are affected by these changes. The authors apologize
for these errors.

Ethics Statement addendum regarding inclusion of minors:
Several minors (age 14–17) were included in the data set for this study because this population
contributes to public opinions on politics and scientific issues (e.g. in the classroom). This
project was conducted under the guidelines of the Australian National Health and Medical
Research Council (NH&MRC). According to NH&MRC there is no explicit minimum age at
which people can give informed consent (as per https://www.nhmrc.gov.au/book/chapter-2-
2-general-requirements-consent). What is required instead is to ascertain the young person’s
competence to give informed consent. In our study, competence to give consent is evident
from the fact that for a young person to be included in our study, they had to be a vetted mem-
ber of a nationally representative survey panel run by uSamp.com (partner of Qualtrics.com,
who collected the data). According to information received from the panel provider, they are
legally empowered to empanel people as young as 13. However, young people under 15 are
recruited to the panel with parental involvement. Parental consent was otherwise not required.
Moreover, for survey respondents to have been included in the primary data set, they were
required to answer an attention filter question correctly, further attesting to their competence
to give informed consent. The UWAHuman Rights Ethics Committee reviewed this issue and
affirmed that “The project was undertaken in a manner that is consistent with the Australian
National Statement of Ethical Conduct in Human Research (2007).”

Correlation of age with indicator variables, and re-assessment of
the structural equation model:
The dataset included two notable age outliers (reported ages 5 and 32757). As all participants
must be at least 13 years old to be included in the Qualtrics panel, it was assumed that these val-
ues reflected errors of entry into the free-form age entry field on the survey. Inspection of these
two records indicated nothing unusual that would suggest or mandate their exclusion. The two
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reported regression weights and correlations. A revised version of Fig 2 is included below. Note
that none of the conclusions in the article are affected by these changes. The authors apologize
for these errors.

Ethics Statement addendum regarding inclusion of minors:
Several minors (age 14–17) were included in the data set for this study because this population
contributes to public opinions on politics and scientific issues (e.g. in the classroom). This
project was conducted under the guidelines of the Australian National Health and Medical
Research Council (NH&MRC). According to NH&MRC there is no explicit minimum age at
which people can give informed consent (as per https://www.nhmrc.gov.au/book/chapter-2-
2-general-requirements-consent). What is required instead is to ascertain the young person’s
competence to give informed consent. In our study, competence to give consent is evident
from the fact that for a young person to be included in our study, they had to be a vetted mem-
ber of a nationally representative survey panel run by uSamp.com (partner of Qualtrics.com,
who collected the data). According to information received from the panel provider, they are
legally empowered to empanel people as young as 13. However, young people under 15 are
recruited to the panel with parental involvement. Parental consent was otherwise not required.
Moreover, for survey respondents to have been included in the primary data set, they were
required to answer an attention filter question correctly, further attesting to their competence
to give informed consent. The UWAHuman Rights Ethics Committee reviewed this issue and
affirmed that “The project was undertaken in a manner that is consistent with the Australian
National Statement of Ethical Conduct in Human Research (2007).”

Correlation of age with indicator variables, and re-assessment of
the structural equation model:
The dataset included two notable age outliers (reported ages 5 and 32757). As all participants
must be at least 13 years old to be included in the Qualtrics panel, it was assumed that these val-
ues reflected errors of entry into the free-form age entry field on the survey. Inspection of these
two records indicated nothing unusual that would suggest or mandate their exclusion. The two
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The dataset included two notable age outliers (reported ages 5 and 32757).

Specifically, the statement on page 9 “age turned out not to correlate with any of 
the indicator variables” is incorrect. It should read instead “age correlated 
significantly with 3 latent indicator variables (Vaccinations: .219, p < .0001; 
Conservatism: .169, p < .001; Conspiracist ideation: -.140, maximum likelihood p 
< .0001, bootstrapped p = .004), and straddled significance for a fourth (Free 
Market: .08, p%.05).”



In [1]: age=32757

In [2]: assert age>12 and age<120
------------------------------------------------
AssertionError                            
Traceback (most recent call last)
<ipython-input-2-37de876b5fda> in <module>()
----> 1 assert age>12 and age<120

AssertionError:
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Improvement: The principle of assumed error

• Whenever you find a seemingly good result (e.g. one 
that fits your predictions), assume that it occurred due 
to an error in your code 

• “The first principle is that you must not fool yourself and 
you are the easiest person to fool” - R. Feynman
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Improvement: Software testing and validation

• Smoke tests and unit tests may be useful but are not 
sufficient 

• For complex analyses: 

• Parameter recovery: Generate data for which the true 
answer is known, and assess ability of code to recover 
the correct answer 

• Randomization: Generate data for which the null 
hypothesis of no relationship should be true on 
average, and ensure that the observed false positive 
rate is accurate (cf. Eklund et al., 2016, PNAS)

http://www.russpoldrack.org/2016/08/the-principle-of-assumed-error.html
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Threats to reproducibility: Study reporting and transparency

• In 22 of the 65 papers we analyzed for multiple 
comparison procedures, it was impossible to identify 
precisely which correction technique was used 

• beyond generic terms such as “cluster based 
correction”
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Improvement: Better study description

• OHBM Committee on Best Practices in Data Analysis 
and Sharing (COBIDAS) report 

• www.humanbrainmapping.org/cobidas/ 

• In the future, tools may be able to automatically 
generate standards-compliant methods text from a 
nipype workflow

http://www.humanbrainmapping.org/cobidas/
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Improvement: Data Sharing
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Enhancing reproducibility. There is increasing concern about the 
reliability and reproducibility of scientific research12,13. One major 
source of concern within neuroscience is the low statistical power of 
many published studies14, given that this increases the proportion of 
published findings that are false15 and can create unwanted biases16. 
These worries have increased pressure to amass larger samples, but in 
many cases this is not feasible owing to recruitment constraints (for 
example, when the number of subjects with a particular disorder in 
any geographical area is limited) or financial limitations. Data shar-
ing allows the generation of sample sizes that would not be feasible 
within a single laboratory, which enables the testing of hypotheses 
with much greater power and thus enhances the reproducibility of 
the results. This has been clearly seen in genetic association studies, 
for which very large sample sizes are necessary and publications by 
multi-site consortia are now the norm17.

Reproducibility has classically been considered in terms of the abil-
ity to replicate the same result across independent data sets. However, 
analysis of fMRI data involves complex, multistep analysis streams, 
and thus another important aspect of reproducibility concerns the 
ability to reproduce results on the same data using different analysis 
pipelines. Carp18 used a shared data set to examine the effects of a 
large number of variations in data analysis parameters (testing over 
16,000 different pipelines) and found that in some cases the analysis 
choices had a substantial impact on the results. The widespread shar-
ing of data would allow researchers to more thoroughly assess the 
reliability of published results across processing streams; for example, 
Ioannidis and colleagues19 have presented a measure called the vibra-
tion ratio that is defined as the ratio of the highest and lowest effect 
sizes across all possible data-processing decisions. Although many 
researchers will not have the computational resources to perform such 
analyses across a large set of analysis pipelines, the open availability of 
data would allow researchers with those resources to better assess the 
degree to which results are reproducible across analysis choices.

Improving research practices. In concert with the concerns  
about reproducibility have come worries about the degree to which 
some relatively standard practices may result in greatly inflated  
false-positive rates. Such concerns were raised several years ago in 
the neuroimaging community regarding circularity (also known as 
‘double dipping’) in region-of-interest analyses20–22. More recently, 
the exercise of analytic flexibility (present in many fields including 
psychology and neuroimaging) has been shown to increase false- 
positive rates to the degree that even physically impossible results can 

be found to be statistically significant23. The knowledge that data will 
ultimately be shared provides an incentive for researchers to ensure 
that they engage in research practices that will stand up to further 
examination, and this positive effect is supported by recent evidence. 
Wicherts et al.24 requested data for a large number of psychologi-
cal studies and then compared papers for which data either were or 
were not voluntarily shared upon request. They found that papers 
for which data was shared had greater effect sizes and lower inci-
dence of apparent statistical errors than those for which data was not  
willingly shared.

Test bed for new analysis methods. New analytic techniques are  
continually being developed for neuroimaging data, and shared data 
provide a common test bed for those techniques as well as benchmarks 
against which new methods can be evaluated. The 1,000 Functional 
Connectomes project25 serves as an excellent example; data from 
this project have been used in a number of papers to demonstrate 
the application of new methods26–29. Similarly, the data from the 
OpenfMRI project have been used to examine the effects of different 
processing pipelines on analysis outcomes18 and test new methods 
to characterize the brain systems that span across multiple cognitive 
tasks10. Although the HCP is still collecting data, the early releases 
have already resulted in papers modeling functional segregation in 
the human cortex30, dynamic analyses of functional connectivity31 
and demonstrations of substantial vascular contributions to Granger 
causality measures32.

Reducing the cost of doing science. Making data available can greatly 
reduce the cost of scientific research when those data are relevant to 
new questions. Table 1 provides a description of a number of cur-
rently available shared neuroimaging data sets (including but not lim-
ited to data sets involving task-based fMRI). Together, these resources 
include data from more than 8,000 participants. Under the assump-
tion that each data set required an average of 1 h of MRI scanner time 
to acquire (at a cost of $500 per hour of data, which is a common 
rate in the United States), these data represent an estimated value of 
more than $4 million for acquisition alone, not to mention the cost 
of recruitment and data processing. Not all questions of interest can 
be answered using existing data sets, but to the degree that they can, 
the use of these shared data instead of collecting redundant new data 
could be a significant source of savings for researchers, allowing more 
money to be spent on personnel involved in data analysis.

Protecting valuable scientific resources. One often-overlooked 
benefit of data sharing is that it provides a redundant backup for 
important data sets. In discussing retrospective data sharing  
with neuroimaging researchers, it has become clear that a number of 
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Figure 1 Data scales in neuroimaging. If we consider data as simply 
machine-readable pieces of information, many neuroimaging studies already 
share data through the publication of stereotactic coordinates representing 
peaks of activation. These data can be further annotated using tools provided 
by BrainMap and BrainSpell. BrainMap and NeuroSynth also provide tools for 
performing data mining and meta-analyses on the collected coordinates. The 
next step from the coordinates is sharing unthresholded statistical maps—a 
process facilitated by the NeuroVault database. Although much more time 
consuming, the sharing of raw data provides more potential for reuse than 
the aforementioned data types. This form of sharing has been executed on 
a massive scale by consortia such as INDI as well as projects such as the 
Nathan Kline Institute (NKI)-Rockland sample and HCP. There also exist 
databases (such as OpenfMRI) that allow deposition of raw data from any 
researcher in the field. HCP and ADNI also provide preprocessed data (HCP 
includes full connectome matrices), which are very large but provide great 
utility to researchers by obviating the need to perform these processing steps. 
There is a clear relationship between the cost to prepare and maintain data 
and the potential effect of those shared data. The resources mentioned in the 
figure are examples and do not constitute an exhaustive list.

R E V I E W

Poldrack & Gorgolewski, 2014
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Improvement: Brain Imaging Data Structure (BIDS)

http://bids.neuroimaging.io

http://bids.neuroimaging.io
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Open sharing is associated with better science

Willingness to Share Research Data Is Related to the
Strength of the Evidence and the Quality of Reporting of
Statistical Results
Jelte M. Wicherts*, Marjan Bakker, Dylan Molenaar

Psychology Department, Faculty of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Background: The widespread reluctance to share published research data is often hypothesized to be due to the authors’
fear that reanalysis may expose errors in their work or may produce conclusions that contradict their own. However, these
hypotheses have not previously been studied systematically.

Methods and Findings: We related the reluctance to share research data for reanalysis to 1148 statistically significant results
reported in 49 papers published in two major psychology journals. We found the reluctance to share data to be associated
with weaker evidence (against the null hypothesis of no effect) and a higher prevalence of apparent errors in the reporting
of statistical results. The unwillingness to share data was particularly clear when reporting errors had a bearing on statistical
significance.

Conclusions: Our findings on the basis of psychological papers suggest that statistical results are particularly hard to verify
when reanalysis is more likely to lead to contrasting conclusions. This highlights the importance of establishing mandatory
data archiving policies.
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Introduction

Statistical analyses of research data are quite error prone
[1,2,3], accounts of statistical results may be inaccurate [4], and
decisions that researchers make during the analytical phase of a
study may lean towards the goal of achieving a preferred
(significant) result [5,6,7,8]. For these and other (ethical) reasons
[9], many scientific journals like PLoS ONE [10] and professional
organizations such as the American Psychological Association (APA)
[11] have clear policies concerning the sharing of data after
research results are published. For instance, upon acceptance for
publication of a paper in one of the over 50 peer-reviewed journals
published by the APA, authors sign a contract that they will make
available data to peers who wish to reanalyze their data to verify
the substantive claims put forth in the paper. Nonetheless, the
replication of statistical analyses in published psychological
research is hampered by psychologists’ pervasive reluctance to
share their raw data [1,12]. In a large-scale study Wicherts et al.
[12] found that 73% of psychologists publishing in four top APA
journals defied APA guidelines by not sharing their data for
reanalysis. The unwillingness to share data of published research
has been documented in a number of fields [13,14,15,16,
17,18,19,20] and is often ascribed in part to the fear among
authors that independent reanalysis will expose statistical or
analytical errors in their work [21] and will produce conclusions

that differ from theirs [22]. However, no published research to
date has addressed whether this rather bleak scenario has a
bearing on reality.

Here we study whether researchers’ willingness to share data for
reanalysis is associated with the strength of the evidence (defined as
the statistical evidence against the null hypothesis of no effect) and
the quality of the reporting of statistical results (defined in terms of
the prevalence of inconsistencies in reported statistical results). To
this end, we followed-up on Wicherts et al.’s requests for data [12]
by comparing statistical results in papers from which data were
either shared or not, and to check for errors in the reporting of p-
values in both types of papers.

Methods

In the summer of 2005, Wicherts and colleagues [12] contacted
the corresponding authors of 141 papers that were published in
the second half of 2004 in one of four high-ranked journals
published by the APA: Journal of Personality and Social Psychology
(JPSP), Developmental Psychology (DP), Journal of Consulting and Clinical
Psychology (JCCP), and Journal of Experimental Psychology: Learning,
Memory, and Cognition (JEP:LMC). The data were requested to
determine the effects of outliers on statistical outcomes (see Text
S1 for details). Although all corresponding authors had signed a
statement that they would share their data for such verification

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e26828
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Won’t I get scooped?

• Maybe… 

• But online publication documents priority 

• Howard Aiken 

• “Don't worry about people stealing an idea. If it's 
original, you will have to ram it down their throats.” 

• Gary King 

• “The thing that matters the least is being scooped.  
The thing that matters the most is being ignored.”
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Improvement: Sharing of analysis platforms

• “an article about a computational result is 
advertising, not scholarship. The actual scholarship is 
the full software environment, code and data, that 
produced the result.”  - Buckheit & Donoho, 1995 

• The tale of myconnectome
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Virtual machines as tools for reproducible science
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Container computing: Docker

Virtual machines Docker containers
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Conclusions

• We need to redesign the choice architecture of fMRI 
methods so that it prevents rather than affords 
fooling ourselves 

• We will almost certainly have fewer successes and 
more failures 

• But the resulting discoveries will have a greatly 
likelihood of being true
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