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Cognition and the neuron doctrine 

Hubel and Wiesel (1959 onward) 

Cognitive function can be attributed to localized neural activity  



Developmental changes in behavior occur 
over much longer time scales 

•  For example ~10 years to become a skilled reader. 
•  Learning to read requires brain circuits to modify their 

structure in response to years of  training (Wandell & Yeatman, 2013). 

Portilla & Simoncelli, 2000 



•  Understanding development requires measurements that are 
sensitive to changes in glia, axons, myelin and vasculature. 

Cognitive development depends on tissue changes 
that occur over correspondingly long time-scales 

Neuron Astrocyte 

Allen & Barres (2009) 

Kettenmann (2012) 

Zlokovic & Apuzo (1998) 

Ture (2000) 

newborn adult 

(LaMantia & Rakic, 1990) 

MRI can be used to quantify brain tissue properties 
and model the interplay between the development of  

brain circuits and cognitive functions. 

But how do we go from MR signals to models of  
development? 



Outline 

1.  From diffusion to fascicles: Models of  an 
individual’s white matter. 

2.  Quantitative MRI measurements of  tissue 
volume and composition. 

3.  Combining multiple measurements to 
dissociate developmental processes. 
– Testing models of  development. 



Outline 

1.   From diffusion to fascicles: Segmenting an 
individual’s white matter. 

2.  Quantitative MRI measurements of  tissue 
volume and composition. 

3.  Combining multiple measurements to 
dissociate developmental processes. 
– Testing models of  development. 



Optic nerve fibers 
George Bartzokis 

Building a wiring diagram with dMRI 
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Cross-validate 
model 

dataset 2 

Optimize fibers 

Pestilli, Yeatman, Rokem, Kay & Wandell (2014), Nature Methods 
Linear Fascicle Evaluation (LiFE) https://github.com/pestilli 

Fit diffusion 
model 

Basser 

Rokem & DIPY 

Choose the model that is 
the best fit to the data 



Fitting a tensor model to diffusion 
measurements 

Diffusion signal 
measured in 

different directions 

Diffusion tensor model: 
Predicts Gaussian diffusion 

in three dimensions 

Visualization of  
tensor model: 

Ellipsoid 

Rokem, Yeatman, Pestilli, Kay, Mezer, Van der Walt and Wandell, (2014), PLoS ONE 



Fitting a tensor model to diffusion 
measurements 

Diffusion signal 
measured in 

different directions 

Diffusion tensor model: 
Predicts Gaussian diffusion 

in three dimensions 

Visualization of  
tensor model: 

Ellipsoid 

Predict diffusion measures 
from tensor model 

Rokem, Yeatman, Pestilli, Kay, Mezer, Van der Walt and Wandell, (2014), PLoS ONE 



Test-retest reliability


Model 


Data 1
 Data 2


Cross-validation


Fit
 Predict


Evaluating the tensor mdoel 



Model => data
Data => data


Relative RMSE = 


If rRMSE < 1  
 Good model


Evaluating tensor model with cross validation 

Rokem, Yeatman, Pestilli, Kay, Mezer, Van der Walt and Wandell, (2014), PLoS ONE 
Slide courtesy of  Ariel Rokem 



The tensor model is a good fit through 
much of  the brain 

Any idea what is 
going on here? 

Rokem, Yeatman, Pestilli, Kay, Mezer, Van der Walt and Wandell, (2014), PLoS ONE 
http://nipy.org/dipy/examples_built/kfold_xval.html#example-kfold-xval 



Linear Fascicle Evaluation (LiFE):  
Validating tractography 

=

Fa
sc

icl
e 

4 

Vo
xe

l s
ig

na
l 

Fa
sc

icl
e 

1 

+
Fa

sc
icl

e 
2 

+
Fa

sc
icl

e 
3 

+

Slides courtesy of  Franco Pestilli 



=

– 

– 

– 

– 

– 

– 

– 

– W1 One weight 
per fascicle 

Validation: Eliminate fascicles with zero weight 

f1 f2 fn … 
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v2 

vn 

…
 
v3 

W2 
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Wn 

Linear Fascicle Evaluation (LiFE):  
Validating tractography 

Pestilli, Yeatman, Rokem, Kay & Wandell (2014), Nature Methods 
Linear Fascicle Evaluation (LiFE) https://github.com/pestilli 



Automated fiber tract quantification: Segmenting 
an individual’s white matter 

DWI 
data 

Yeatman et al. (2012), PLoS ONE  --  Software available at: https://github.com/YeatmanLab/AFQ 

The goal of  all this modeling 
is to generate accurate 
estimates of  an individual’s 
white matter connections 



Automated fiber tract quantification: Segmenting 
an individual’s white matter 

DWI 
data 

FODF 

Connectome Fascicle 

Segmentation 

Map Tissue Properties to Fascicle 

Yeatman et al. (2012), PLoS ONE  --  Software available at: https://github.com/YeatmanLab/AFQ 
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So with all this work, how well do we do? 

Yeatman et al. (2012), PLoS ONE  --  Software available at: https://github.com/YeatmanLab/AFQ 

•  Measures of  white matter microstructure are highly reliable. 

Arcuate Fasciculus – dMRI acquisition: 32 directions b=800; 64 directions b=2000 



How might we select the optimal 
tractography algorithm to use with AFQ? 

•  Consider two use cases: 
–  Clinical data collected on children with traumatic brain 

injury versus Human Connectome Project data. 

•  What might be the pros and cons to using a tensor 
model with deterministic tractography versus 
spherical deconvolution with probabilistic 
tractography? 



The choice of  algorithm has a substantial 
impact on the results 

Spherical Deconvolution  
Probabilistic tractography 

Tensor Model 
Deterministic Tractography 

A P 

S 

I 



The choice of  algorithm has a substantial 
impact on the results 

Spherical Deconvolution  
Probabilistic tractography 

Tensor Model 
Deterministic Tractography 

L R 

S 

I 



Much of  

The core of  the fascicle is consistent but 
the cortical endpoints differ 

A P 

S 

I 

•  Select the appropriate algorithm based on the goals of  the study. 
•  Test the fit of  the fascicles to the diffusion measurements. 

•  Remember that tractography is a model 

The same “core” 
fascicle 

Substantially different 
endpoints 



Summary: From diffusion to fascicles 

•  Based on diffusion measurements we can fit a model of  the 
fascicles that pass through a voxel and quantify the fit of  
the model with cross-validation. 
–  http://nipy.org/dipy/examples_built/kfold_xval.html#example-kfold-xval 

•  Inferences about brain connectivity depend on selecting the 
appropriate diffusion model and tractography algorithm for 
your research question. 
–  Fascicles are themselves a model and we should use cross-validation 

to test how well they predict the data. 

–  https://github.com/pestilli 

 



Outline 

1.   From diffusion to fascicles: Segmenting an 
individual’s white matter. 

2.  Quantitative MRI measurements of  tissue 
volume and composition. 

3.  Combining multiple measurements to 
dissociate developmental processes. 
– Testing models of  development. 



Outline 

1.  From tractography to fascicles: Segmenting 
an individual’s white matter. 

2.   Quantitative MRI measurements of tissue 
volume and composition. 

3.  Combining multiple measurements to 
dissociate developmental processes. 
– Testing models of  development. 



Inferring tissue biology from diffusion 
•  Diffusion is very sensitive to tissue changes and can help 

generate hypotheses about potential biological processes. 

High Mean Diffusivity (MD) Low Mean Diffusivity (MD) 
http://JasonYeatman.com/teachingFiles 

Wandell & Yeatman (2013);  Stikov et al., (2011);  Assaf  & Pasternak (2008);  Beaulieu (2002)  



Diffusion is affected by many tissue properties  

•  It’s amazing that water diffusion correlates with behavior (e.g., 
Klingberg et al., 2000). 

•  The relationship between water diffusion and tissue biology is not 
straightforward (Beaulieu, 2002; Jones, Knosche & Turner 2013). 

•  Additional measurements modalities will be help constrain our models. 

Wedeen et al., (2008, 2012) 



Quantitative MRI measurements of  
tissue volume and composition 

MTV=0.1 MTV=0.3 

Mezer, Yeatman et al. (2013), Nature Medicine 

Aviv Mezer 



Mezer, Yeatman et al. (2013), Nature Med;  Yeatman, Wandell & Mezer (2014) Nature Comm 

In vivo histology with quantitative MRI  

Aviv Mezer 
Hebrew University 



Mezer, Yeatman et al. (2013), Nature Med;  Yeatman, Wandell & Mezer (2014) Nature Comm 

In vivo histology with quantitative MRI  
•  MR signals (T1) from water protons change when the protons 

interact with membranes. 

•  T1 image intensity depends on the amount and composition 
of  tissue in each voxel as well as scanner biases. 

Macromolecule tissue volume (MTV) 



In vivo histology with quantitative MRI  

Image  
intensity = f g,α,T1,MTV( )

coil 
gain 

scan 
parameters 

tissue 
properties 

In the white matter T1 relaxation rate 
is principally driven by myelin content 
(Stuber et al., 2014). 

•  MR signals (T1) from water protons change when the protons 
interact with membranes. 

•  T1 image intensity depends on the amount and composition 
of  tissue in each voxel as well as scanner biases. 

Mezer, Yeatman et al. (2013), Nature Med;  Yeatman, Wandell & Mezer (2014) Nature Comm 



What does “quantitative MRI” mean? 

•  T1 (s) - The T1 relaxation rate is a physical 
property of  water protons in a magnetic field, 
has units, and does not depend on scanner 
hardware/pulse sequence. 
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What does “quantitative MRI” mean? 

•  T1 (s) - The T1 relaxation rate is a physical 
property of  water protons in a magnetic field, 
has units, and does not depend on scanner 
hardware/pulse sequence. 
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a = 30

a = 20

a = 10

a = 4

From images to quantitative tissue maps 

Image intensity = f g,α,T1,MTV( )

T1 weighted 

 

 

a.u.
2930 4350 5780 7200

 water fraction
0 0.25 0.5 0.75 1

 

 

A B C D

0

Excite and receive 
coil biases 

4.3  

0  

Seconds 

T1 map 
0 

1

V
olum

e F
raction 

MTV map 

Mezer, Yeatman et al. (2013), Nature Medicine 

In the white matter 
T1 relaxation rate is 
principally driven 
by myelin content 
(Stuber et al., 2014). 

MTV quantifies the 
volume of  tissue 
versus water in a 
voxel. 



Quantitative MRI measures are 
independent of  scanner hardware 
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Summary: Quantitative MRI 

•  MRI can be used to quantify many important 
properties of  the tissue. 
–  Volume of  tissue macromolecules (MTV). 
–  T1 relaxation rate is sensitive to myelin (Stuber et al., 2014). 

•  Quantitative MRI measurements are independent 
of  the specific scanner hardware and pulse 
sequence. 
–  Opens up new diagnostic applications. 



Outline 

1.  From tractography to fascicles: Segmenting 
an individual’s white matter. 

2.   Quantitative MRI measurements of tissue 
volume and composition. 

3.  Combining multiple measurements to 
model brain development. 
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In vivo histology: 
Combining measures to model brain tissue 

•  What can we learn about development with qMRI: 
–  Do different types of  tissue have distinct maturational 

time-courses (e.g., myelin vs. astrocytes)? 
–  Which properties of  the white matter are related to 

behavior? 

–  Can we model how properties of  the white matter affect 
cortical computation (i.e., why do white matter 
measures predict behavior)? 



In vivo histology: 
Combining measures to model brain tissue 
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Measuring the creation of  new tissue 
in the developing brain 
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Yeatman, Wandell & Mezer, (2014). Nature Communications 
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Age 
10       15      20      25      30      35      40  

Age 
10       15      20      25      30      35      40  

M
T

V
 

.34 

.32 

.30 

.28 

.26 

.34 

.32 

.30 

.28 

.26 

M
T

V
 

Yeatman, Wandell & Mezer, (2014). Nature Communications 

Does each qMRI parameter measure the same 
underlying biological properties? 
Can we detect multiple developmental processes in 
the white matter? 

Calculate volume of  tissue 
growth in each tract 
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Does each qMRI parameter measure the same 
underlying biological properties? 
Can we detect multiple developmental processes in 
the white matter? 

Yeatman, Wandell & Mezer, (2014). Nature Communications 
 



Does each qMRI parameter measure the same 
underlying biological properties? 
Can we detect multiple developmental processes in 
the white matter? 

•  R1 and MTV are sensitive to the same developmental processes. 
•  Diffusion is sensitive to independent processes. 
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Yeatman, Wandell & Mezer, (2014). Nature Communications 



Last-in-first-out hypothesis: Late developing brain regions 
are more susceptible to degenerative processes. 

•  Are the last regions to develop, the first to degenerate? 
–  Important implications for models of  aging and disease. 

•  How might we test this hypothesis? 
–  Implement a model and test the fit to the data 

https://github.com/yeatmanlab/lifespan  piecewiseFit.m, piecewiseEval.m 

Piecewise Linear Model End of  development Beginning of  decline 



Last-in-first-out hypothesis: Late developing brain regions 
are more susceptible to degenerative processes. 
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Last-in-first-out hypothesis: Late developing brain regions 
are more susceptible to degenerative processes. 

•  There is no relationship between the age of  maturation and 
the age of  degeneration for R1 or diffusivity. 

•  We can reject the Last-in-first-out hypothesis. 
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https://github.com/yeatmanlab/lifespan  piecewiseFit.m, piecewiseEval.m 

https://github.com/yeatmanlab/lifespan  
nc_Figure6.m 



Symmetry hypothesis: The amount of  growth 
predicts the amount of  decline 
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Yeatman, Wandell & Mezer, (2014). Nature Communications 

https://github.com/yeatmanlab/lifespan  
nc_Figure4.m   nc_Figure5.m 



Symmetry hypothesis: The amount of  growth 
predicts the amount of  decline 
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1.  Testing the prediction of  the 
parabolic model: Lifespan 
changes should be symmetric. 

2.  Growth of  myelin during 
development predicts 
degeneration during aging. 

Yeatman, Wandell & Mezer, (2014). Nature Communications 

https://github.com/yeatmanlab/lifespan  
nc_Figure5.m 



Summary 

•  The time-courses of  R1 and diffusion changes 
demonstrate that multiple biological processes drive 
changes in the white-matter over the lifespan. 
–  qMRI can dissociate different tissue changes. 

•  There is not a systematic relationship between the age 
of  maturation and degeneration 
–  Last-in-first out does not fit the data 

•  A symmetric model predicts R1 changes over the 
lifespan. 
–  Models provide insight into mechanisms and generate 

testable perditions. 
•  We can define, test and interpret models at the level of  

voxels, tracts and lifespan maturation. 
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Removing bias and computing MTV 

mingi {∑ (MTVi −MTV )
2}gi *(1−MTV )

Mezer, Yeatman et al. (2013), Nature Medicine 

Each coil sees the same underlying MTV 
value but has its own gain function 

Solve for the each coil’s gain function 
to uncover the true MTV value 
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