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Cognition and the neuron doctrine

Cognitive function can be attributed to localized neural activity

Hubel and Wiesel (1959 onward)



Developmental changes 1n behavior occur
over much longer time scales

For example ~10 years to become a skilled reader.

* Learning to read requires brain circuits to modify their
structure 1n response to years of training (Wandell & Yeatman, 2013).
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Cognitive development depends on tissue changes
that occur over correspondingly long time-scales

* Understanding development requires measurements that are
sensitive to changes in glia, axons, myelin and vasculature.

MRI can be used to quantify brain tissue properties |
and model the interplay between the development of

brain circuits and cogn1t1ve funct1ons
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But how do we go from MR s1gnals to models of
development7

Ture (2000)

Allen & Barres (2009)



Outline

1. From diffusion to fascicles: Models of an
individual’s white matter.

2. Quantitative MRI measurements of tissue
volume and composition.

3. Combining multiple measurements to
dissociate developmental processes.

— Testing models of development.



Outline

1. From diffusion to fascicles: Segmenting an
individual’s white matter.

2. Quantitative MRI measurements of tissue
volume and composition.

3. Combining multiple measurements to
dissociate developmental processes.

— Testing models of development.



Building a wiring diagram with dMRI
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Linear Fascicle Evaluation (LiFE) https://github.com/pestilli
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Fitting a tensor model to diffusion
measurements
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Diffusion tensor model:
Predicts Gaussian diffusion
1n three dimensions

Diffusion signal Visualization of
measured in tensor model:
different directions Ellipsoid

Rokem, Yeatman, Pestilli, Kay, Mezer, Van der Walt and Wandell, (2014), PLoS ONE



Fitting a tensor model to diffusion
measurements

Predict diffusion measures
from tensor model
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Diffusion tensor model:
Predicts Gaussian diffusion
1n three dimensions

Diffusion signal Visualization of
measured in tensor model:
different directions Ellipsoid

Rokem, Yeatman, Pestilli, Kay, Mezer, Van der Walt and Wandell, (2014), PLoS ONE



Evaluating the tensor mdoel
Data 1 Data 2

Test-retest reliability

—

Cross-validation
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Evaluating tensor model with cross validation

Data => data Model => data
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The tensor model 1s a good fit through
much of the brain

rRMSE

Any idea what 1s
going on here?

'

Rokem, Yeatman, Pestilli, Kay, Mezer, Van der Walt and Wandell, (2014), PLoS ONE
http:/ /nipy.org/dipy/examples built/kfold xval html#example-kfold-xval




Linear Fascicle Evaluation (LiFE):
Validating tractography

Voxel signal
1
Fascicle 1
+
Fascicle 2
+
Fascicle 3
+
Fascicle 4

Slides courtesy of Franco Pestilli



Linear Fascicle Evaluation (LiFE):
Validating tractography

Validation: Eliminate fascicles with zero weight

Diffusion . iy lig oo If
signal, S(6) 4

™[] One weight
per fascicle

Linear Fascicle Evaluation (LiFE) https://github.com/pestilli
Pestilli, Yeatman, Rokem, Kay & Wandell (2014), Nature Methods



Automated fiber tract quantification: Segmenting
an individual’s white matter

The goal of all this modeling
1S to generate accurate
estimates of an individual’s
white matter connections

Yeatman et al. (2072), PLoS ONE -- Software available at: https://github.com/YeatmanLab/AFQ



Automated fiber tract quantification: Segmenting
an individual’s white matter

Yeatman et al. (2072), PLoS ONE -- Software available at: https://github.com/YeatmanLab/AFQ



So with all this work, how well do we do?

* Measures of white matter microstructure are highly reliable.
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How might we select the optimal
tractography algorithm to use with AFQ?

e Consider two use cases:

— Clinical data collected on children with traumatic brain
injury versus Human Connectome Project data.
 What might be the pros and cons to using a tensor
model with deterministic tractography versus
spherical deconvolution with probabilistic
tractography?



The choice of algorithm has a substantial
impact on the results

Spherical Deconvolution Tensor Model

Probabilistic tractography Deterministic Tractography




The choice of algorithm has a substantial
impact on the results

Spherical Deconvolution Tensor Model
Probabilistic tractography Deterministic Tractography




The core of the fascicle 1s consistent but

the cortical endpoints differ

» Select the appropriate algorithm based on the goals of the study.

» Test the fit of the fascicles to the diffusion measurements.
 Remember that tractography is a model

The same “core” Substantially different
I fascicle endpoints




Summary: From diffusion to fascicles

* Based on diffusion measurements we can fit a model of the
fascicles that pass through a voxel and quantify the fit of
the model with cross-validation.

— http://nipy.org/dipy/examples built/kfold xval.html#example-kfold-xval

» Inferences about brain connectivity depend on selecting the
appropriate diffusion model and tractography algorithm for
your research question.

— Fascicles are themselves a model and we should use cross-validation
to test how well they predict the data.

— https://github.com/pestilli




Outline

1. From diffusion to fascicles: Segmenting an
individual’s white matter.

2. Quantitative MRI measurements of tissue
volume and composition.

3. Combining multiple measurements to
dissociate developmental processes.

— Testing models of development.



Outline

1. From tractography to fascicles: Segmenting
an 1individual’s white matter.

2. Quantitative MRI measurements of tissue
volume and composition.

3. Combining multiple measurements to
dissociate developmental processes.

— Testing models of development.



Inferring tissue biology from diffusion

» Diffusion 1s very sensitive to tissue changes and can help
generate hypotheses about potential biological processes.

High Mean Diffusivity (MD) Low Mean Diffusivity (MD)

Wandell & Yeatman (2013); Stikov et al., (2011), Assaf & Pasternak (2008); Beaulieu (2002)



Diffusion 1s affected by many tissue properties

e It’s amazing that water diffusion correlates with behavior (e.g.,
Klingberg et al., 2000).

* The relationship between water diffusion and tissue biology 1s not
straightforward (Beaulieu, 2002; Jones, Knosche & Turner 2013).

« Additional measurements modalities will be help constrain our models.

Wedeen et al., (2008, 2012)



Quantitative MRI measurements of
tissue volume and composition
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Mezer, Yeatman et al. (2013), Nature Medicine



In vivo histology with quantitative MRI

Aviv Mezer
Hebrew University
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Mezer, Yeatman et al. (2013), Nature Med; Yeatman, Wandell & Mezer (2014) Nature Comm



In vivo histology with quantitative MRI

MR signals (T1) from water protons change when the protons
interact with membranes.

* T1 image intensity depends on the amount and composition
of tissue in each voxel az =" N
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Mezer, Yeatman et al. (2013), Nature Med; Yeatman, Wandell & Mezer (2014) Nature Comm



In vivo histology with quantitative MRI

MR signals (T1) from water protons change when the protons
interact with membranes.

* T1 image intensity depends on the amount and composition
of tissue 1n each voxel as well as scanner biases.

coil scan tissue
gain parameters  properties

TV
%, = To=TIUTY)
intensity *
In the white matter T1 relaxation rate

1s principally driven by myelin content
(Stuber et al., 2014).

mm

Mezer, Yeatman et al. (2013), Nature Med; Yeatman, Wandell & Mezer (2014) Nature Comm



What does “quantitative MRI” mean?

* TI (s) - The T1 relaxation rate 1s a physical
property of water protons in a magnetic field,
has units, and does not depend on scanner
hardware/pulse sequence.




What does “quantitative MRI” mean?

* TI1 (s) - The T1 relaxation rate 1s a physical ﬁ;fg .
property of water protons in a magnetic field, o 5%
has units, and does not depend on scanner

hardware/pulse sequence.
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From 1mages to quantitative tissue maps

MTYV map

T1 weighted

Excite and receive
coil biases
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Mezer, Yeatman et al. (2013), Nature Medicine

MTYV quantifies the
volume of tissue
versus water in a
voxel.

In the white matter
T1 relaxation rate is
principally driven
by myelin content
(Stuber et al., 2014).




Quantitative MRI measures are
independent of scanner hardware
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Yeatman, Wandell & Mezer, (2014). Nature Communications



Summary: Quantitative MRI

 MRI can be used to quantify many important
properties of the tissue.
— Volume of tissue macromolecules (MTYV).
— T1 relaxation rate 1s sensitive to myelin (Stuber et al., 2014).

* Quantitative MRI measurements are independent
of the specific scanner hardware and pulse
sequence.

— Opens up new diagnostic applications.



Outline

1. From tractography to fascicles: Segmenting
an 1individual’s white matter.

2. Quantitative MRI measurements of tissue
volume and composition.

3. Combining multiple measurements to
model brain development.



Outline

1. From tractography to fascicles: Segmenting
an 1individual’s white matter.

2. Quantitative MRI measurements of tissue
volume and composition.

3. Combining multiple measurements to
model brain development.



In vivo histology:
Combining measures to model brain tissue

 What can we learn about development with gMRI:

— Do different types of tissue have distinct maturational
time-courses (e.g., myelin vs. astrocytes)?

— Which properties of the white matter are related to
behavior?

— Can we model how properties of the white matter affect
cortical computation (1.e., why do white matter
measures predict behavior)?



In vivo histology:
Combining measures to model brain tissue
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Measuring the creation of new tissue
in the developing brain
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Left Corticospinal
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Does each gqMRI parameter measure the same
underlying biological properties?

Can we detect multiple developmental processes in
the white matter?
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Yeatman, Wandell & Mezer, (2014). Nature Communications



Does each gqMRI parameter measure the same
underlying biological properties?

Can we detect multiple developmental processes in
the white matter?
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Yeatman, Wandell & Mezer, (2014). Nature Communications



Does each gqMRI parameter measure the same

underlying biol

logical properties?

Can we detect multiple developmental processes 1n
the white matter?
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« R1and MTYV are sensitive to the same developmental processes.
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Last-in-first-out hypothesis: Late developing brain regions
are more susceptible to degenerative processes.

* Are the last regions to develop, the first to degenerate?
— Important implications for models of aging and disease.

 How might we test this hypothesis?
— Implement a model and test the fit to the data

End of development Piecewise Linear Model Beginning of decline

Transition 1 Transition 2

Slope 2

Intercept

https://github.com/yeatmanlab/lifespan piecewiseFit.m, piecewiseEval.m



Last-in-first-out hypothesis: Late developing brain regions

Q

MRI measure

Beginning of decline

are more susceptible to degenerative processes.
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https://github.com/yeatmanlab/lifespan piecewiseFit.m, piecewiseEval.m



Last-in-first-out hypothesis: Late developing brain regions
are more susceptible to degenerative processes.

Q

MRI measure

Beginning of decline

* There 1s no relationship between the age of maturation and

the age of degeneration for R1 or diffusivity.

* We can reject the Last-in-first-out hypothesis.
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Symmetry hypothesis: The amount of growth
predicts the amount of decline

W= R1data I data . .
Diffusivity data N 2nd order polynomial fit
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nc_Figure4.m nc_Figure5.m
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c. Local regression

a. Second order polyn

Scale factor

Slope 1 Slope 2

Intercept Vertex position Intercept

Yeatman, Wandell & Mezer, (2014). Nature Communications



Symmetry hypothesis: The amount of growth
predicts the amount of decline
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Summary

The time-courses of R1 and diffusion changes
demonstrate that multiple biological processes drive
changes in the white-matter over the lifespan.

— gMRI can dissociate different tissue changes.
There 1s not a systematic relationship between the age
of maturation and degeneration

— Last-in-first out does not fit the data
A symmetric model predicts R1 changes over the
lifespan.

— Models provide insight into mechanisms and generate
testable perditions.

We can define, test and interpret models at the level of
voxels, tracts and lifespan maturation.



Thank you!

Ariel Rokem

Bob Dougherty  Aviv Mezer
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Removing bias and computing MTV

Each coil sees the same underlying MTV Solve for the each coil’s gain function
value but has its own gain function to uncover the true MTV value

g, *(1-MTV) min {> (MTV,—MTV)’}

Mezer, Yeatman et al. (2013), Nature Medicine



